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Abstract

This thesis explores the power and limitations of quantum computing by developing

new classical and quantum algorithms, as well as establishing lower bounds. Along the

way, we revisit and extend existing results to new settings. We use two types of algorithmic

models: approximation algorithms and property testing.

The problems studied fall into twomain categories. The first is motivated by topological

data analysis and we look at it through the lens of algebraic topology. Here, the input is a

simplicial complex, which models high-dimensional relationships in data. The objective is

to estimate the number of high-dimensional “holes” – formally, the Betti numbers, or the

ranks of the complex’s homology groups.

A prior result presented an efficient quantum algorithm for additively estimating nor-

malised high-dimensional Betti numbers. We complement this by providing a classical

benchmark: a randomised path-integral Monte Carlo algorithm. While the quantum algo-

rithm is efficient when the desired precision and the spectral gap of the combinatorial Lapla-

cian are inverse-polynomial, our randomised algorithm is efficient for a more restricted pa-

rameter regime – specifically, when the precision and the spectral gap are constant. For the

special case of clique complexes, we provide an extension of this regime.

In property testing it suffices for the algorithm to distinguish with high probability in-

puts that satisfy some property from those that are “far” (according to some distance mea-

sure and parameter) from any input that satisfies it. We also investigate a property testing

problem in topological data analysis: determining whether a clique complex has a large

Betti number (over the finite field with two elements), or is far from any such complex. We

show that a constant number of queries suffice to solve this problem for clique complexes

if the dimension and the proximity parameter are constants.

The second class of problems relates to the k-collision problem, where the goal is to

detect whether a string contains k-tuples of identical characters. We formalise this as a

property testing problem: distinguish inputs with no k-collisions from those that are far

from this property. While the classical complexity of this problem is settled, the quantum

case remained open, with only partial upper and lower bounds known in this setting.

We generalise a known quantum algorithm for the k-collision problem to a subgraph-

freeness property testing problem in the directed bounded-degree model. We then prove a

lower bound using the dual polynomial method, extending prior results to a broader set-

ting. Finally, we present some graph property testing problems, among them the testing

version of 3-colourability, and show that they have asymptotically maximal quantum query

complexity in the bounded-degree model.

Keywords: query complexity, quantum computing, algorithms, algebraic topology, topo-

logical data analysis, property testing, collision finding, dual polynomial method, bounded-

degree graphs.
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Résumé

Titre : Test de propriétés quantique et topologie algébrique

Cette thèse explore la puissance et les limitations du calcul quantique en développant

de nouveaux algorithmes classiques et quantiques, ainsi qu’en établissant des bornes infé-

rieures. Au passage, nous revisitons des résultats existants et les étendons à de nouveaux

contextes. Nous utilisons deux types demodèles algorithmiques : les algorithmes d’approxi-

mation et les tests de propriété.

Les problèmes étudiés se répartissent en deux catégories principales. La première est

motivée par l’analyse topologique des données que nous abordons sous l’angle de la to-

pologie algébrique. Ici, l’entrée est un complexe simplicial, qui modélise des relations de

haute dimension dans les données. L’objectif est d’estimer le nombre de « trous » de haute

dimension – formellement, les nombres de Betti, ou les rangs des groupes d’homologie du

complexe.

Un algorithme quantique efficace était déjà connu pour estimer de manière additive les

nombres de Betti normalisés en haute dimension. Nous complétons ce résultat en fournis-

sant une solution classique : un algorithme probabiliste de Monte Carlo à intégrale de che-

min. Alors que l’algorithme quantique est efficace lorsque la précision souhaitée et l’écart

spectral du laplacien combinatoire sont inversement polynomiaux, notre algorithme pro-

babiliste est efficace dans un régime de paramètres plus restreint – en particulier, lorsque la

précision et l’écart spectral sont constants. Pour le cas particulier des complexes de cliques,

nous proposons une extension de ce régime.

Dans les tests (probabilistes) de propriétés, il suffit que l’algorithme distingue avec une

forte probabilité les entrées qui satisfont une certaine propriété de celles qui sont « éloignées

» (selon une certaine distance et un paramètre) de toute entrée qui la satisfait. Nous étudions

également un problème de test de propriété en analyse topologique de données : déterminer

si un complexe de cliques a un nombre de Betti élevé (sur le corps fini à deux éléments),

ou s’il est éloigné de tout tel complexe. Nous montrons qu’un nombre constant de requêtes

suffit à résoudre ce problème pour les complexes de cliques si la dimension et le paramètre

de proximité sont constants.

La seconde classe de problèmes est liée au problème des k-collisions, où le but est de

détecter si une chaîne de caractères contient k-uplets de caractères identiques. Nous forma-

lisons cela comme un problème de test de propriété : distinguer les entrées sans k-collisions
de celles qui en sont éloignées. Alors que la complexité classique de ce problème est éta-

blie, le cas quantique restait ouvert, avec seulement des bornes inférieures et supérieures

partielles connues dans ce cadre.

Nous généralisons un algorithme quantique connu pour le problème des k-collisions
à un problème de test de la propriété de non-présence de sous-graphes dans le modèle

orienté à degré borné. Nous prouvons ensuite une borne inférieure en utilisant la méthode
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polynomiale duale, étendant des résultats antérieurs à un cadre plus général. Enfin, nous

présentons quelques problèmes de test de propriétés de graphes, parmi lesquels la version

test de la 3-colorabilité, et montrons qu’ils ont une complexité de requête quantique asymp-

totiquement maximale dans le modèle à degré borné.

Mots clefs : complexité en requête, calcul quantique, algorithmes, topologie algébrique,

analyse topologique des données, test de propriété, recherche de collisions, méthode poly-

nomiale duale, graphes à degré borné.

v



Contents

Acknowledgements i

Abstract iii

Résumé iv

Contents vi

List of tables and figures viii

Résumé substantiel en français ix

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Classical computing and query complexity . . . . . . . . . . . . . . 2

1.1.2 Property testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Quantum computing . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Topological data analysis . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.5 Collision finding and related problems . . . . . . . . . . . . . . . . 6

1.2 Overview of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Classical algorithms for Betti number estimation . . . . . . . . . . 7

1.2.2 Quantum property testing . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 11

2.1 Notations and basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Query complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Property testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Hoeffding’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Quantum computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Some linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.2 The postulates of quantum computing . . . . . . . . . . . . . . . . 16

2.5.3 Some models in quantum computing . . . . . . . . . . . . . . . . . 17

2.5.4 The polynomial method . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.5 Grover’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Simplicial complexes and Betti numbers . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



2.6.2 Chain groups and boundaries . . . . . . . . . . . . . . . . . . . . . 24

2.6.3 Homology groups and Betti numbers . . . . . . . . . . . . . . . . . 25

2.6.4 Persistent Betti numbers and Laplacians . . . . . . . . . . . . . . . 27

3 Classical algorithms for Betti number estimation 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Additive approximation of Betti numbers . . . . . . . . . . . . . . 28

3.1.2 Property testing Betti numbers . . . . . . . . . . . . . . . . . . . . 31

3.2 Notations and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Combinatorial Laplacians . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Property testing subgraph freeness . . . . . . . . . . . . . . . . . . 35

3.2.3 Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Additive approximation of Betti numbers . . . . . . . . . . . . . . . . . . . 36

3.3.1 Algorithm for general simplicial complexes . . . . . . . . . . . . . 38

3.3.2 Algorithm for clique complexes . . . . . . . . . . . . . . . . . . . . 43

3.4 Property testing very large Betti numbers . . . . . . . . . . . . . . . . . . . 45

3.4.1 Betti numbers via independent faces . . . . . . . . . . . . . . . . . 45

3.4.2 Testing large Betti numbers . . . . . . . . . . . . . . . . . . . . . . 48

4 Quantum property testing 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Property testing of directed bounded degree graphs . . . . . . . . . 51

4.1.2 Related works on collision finding . . . . . . . . . . . . . . . . . . 52

4.1.3 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.4 Technical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.5 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Notations and basic definitions . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Query complexity on graphs . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3 Problem definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Quantum algorithm for testing subgraph-freeness . . . . . . . . . . . . . . 64

4.3.1 The algorithm for k = 2 . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 The algorithm for general k . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Collision-freeness lower bound . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 The (dual) polynomial method . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.3 Main lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Testing 3-colourability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.1 Classical lower bound approach for testing 3-colourability . . . . . 79

4.5.2 Quantum lower bound for testing E(3, c)LIN-2 and 3-colourability 80

4.5.3 Other maximally hard-to-test problems . . . . . . . . . . . . . . . . 81

4.6 A maximally hard-to-test property in the dense graph model . . . . . . . . 82

5 Conclusion and perspectives 85

Bibliography 87

vii



List of tables

3.1 Comparison of the parameter settings of quantum and classical algorithms

for the Betti number estimation problem under which their running time is

polynomial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Known bounds on the query complexity of distribution testing. . . . . . . 60

List of figures

2.1 Depiction of gap problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Example of a circuit that implements quantum teleportation. . . . . . . . . 18

2.3 The circuit of a quantum query algorithm. . . . . . . . . . . . . . . . . . . 20

2.4 A small example of a simplicial complex. . . . . . . . . . . . . . . . . . . . 23

2.5 The two orientations of a triangle and the induced orientations of the edges. 23

2.6 The boundary of a triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Filtration: Vietoris-Rips complexes at different ϵ values. Source: [Rie17]. . 27

viii



Résumé substantiel en français

De nos jours, la quantité de données numériques structurées dans nos vies augmente

à un rythme effréné, ce qui rend le traitement efficace de l’information très important. Par

exemple, l’ensemble de tous les articles scientifiques peut être représenté comme un gigan-

tesque réseau orienté de nœuds (articles) reliés par des arêtes (références entre les articles),

et l’on pourrait être intéressé par trouver un article influent, c’est-à-dire un article ayant

plus d’un certain nombre de citations. Parmi les autres exemples de grands réseaux, on peut

citer leWorldWideWeb, les réseaux sociaux, tous les messages d’une application de messa-

gerie, etc. Les graphes sont d’une importance capitale pour comprendre ces grands réseaux,

car ils offrent un moyen naturel de représenter et d’analyser les relations complexes au sein

des ensembles de données.

En général, lorsqu’il a accès à un objet d’entrée de taille énorme, un algorithme doit

résoudre un problème, par exemple décider s’il satisfait à une certaine propriété. Parfois, le

simple fait de lire l’ensemble des données prendrait trop de temps. Dans ce cas, nous aime-

rions disposer d’un algorithme sous-linéaire qui résolve le problème. Plusieurs paradigmes

différents visent à atteindre cet objectif. Une solution possible consiste à réduire la quantité

de données par échantillonnage aléatoire : en émettant certaines hypothèses sur l’entrée et

en ne considérant qu’une petite partie de celle-ci, le problème peut dans certains cas être

résolu avec une probabilité élevée. Une autre possibilité consiste à utiliser des phénomènes

quantiques susceptibles d’accélérer le calcul.

Vu d’un niveau élevé, dans cette thèse, nous examinons l’accélération de calcul que ces

techniques peuvent apporter. D’une part, cela signifie concevoir de nouveaux algorithmes

efficaces qui résolvent un problème donné ; d’autre part, prouver des bornes inférieures

montrant qu’aucun algorithme qui résout le problème ne peut être plus efficace que la

borne inférieure. De plus, on peut comparer l’efficacité avec laquelle une tâche peut être

résolue dans différents modèles. Par exemple, l’une des questions majeures de l’informa-

tique quantique est de trouver des problèmes utiles présentant un avantage quantique ex-

ponentiel, c’est-à-dire que les ordinateurs quantiques peuvent les résoudre beaucoup plus

efficacement que les machines classiques. Par conséquent, améliorer l’efficacité classique

d’un problème comme celui-ci en proposant un nouvel algorithme est également intéres-

sant du point de vue de l’informatique quantique.

Aperçu des résultats

Voici un bref aperçu général des principales contributions de cette thèse.
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Algorithmes classiques pour l’estimation des nombres de Betti

Approximation additive des nombres de Betti

Dans Chapitre 3, les résultats de deux articles sont présentés. Tout d’abord, sur la base

de [AGSS23], nous proposons un algorithme classique pour le problème suivant. L’entrée

est un complexe simplicialK avec n sommets, dk k-simplexes et le k-ième nombre de Betti

βk. La sortie est une estimation additive ε du nombre de Betti normalisé βk/dk. Nous sup-
posons que nous avons accès à l’échantillonnage et à la requête du complexe simplicial K
en entrée. Nous pouvons également dire qu’en temps polynomial, nous pouvons vérifier

si un ensemble de sommets est un simplexe dans K , et nous pouvons obtenir un simplexe

aléatoire d’une taille donnée.

Un élément important de notre algorithme est unematriceH liée au Laplacien combina-

toire du complexeK . Nous montrons que la trace normalisée d’une puissance suffisamment

élevée deH donne une estimation du k-ième nombre de Betti normalisé. Nous estimons en-

suite cette trace normalisée en remarquant qu’elle correspond à l’espérance d’une variable

aléatoire qui peut être calculée par un processus de Monte Carlo.

Intuitivement, nous partons d’un simplexe aléatoire deK et effectuons unemarche aléa-

toire sur les simplexes de K avec des probabilités de transition correspondant aux entrées

de H . En utilisant une borne de concentration standard, nous pouvons estimer le nombre

de fois où nous devons répéter ce processus afin d’obtenir une approximation suffisamment

bonne du k-ième nombre de Betti normalisé.

La complexité de cet algorithme de base peut être légèrement améliorée en utilisant les

polynômes de Chebyshev pour estimer la puissance de H . De plus, dans le cas particulier

où K est un complexe clique, nous pouvons montrer que H est plus creuse qu’en général,

ce qui réduit le nombre de répétitions nécessaires pour obtenir l’estimation souhaitée.

On savait déjà avant nos travaux que les algorithmes quantiques peuvent résoudre cette

tâche efficacement, même pour de grandes valeurs de k, mais aucun algorithme classique

efficace n’était connu dans ce régime. Plus précisément, la complexité temporelle de l’al-

gorithme quantique de [LGZ16] est polynomiale en n, 1/ε et 1/γ, où n est le nombre de

sommets, ε est le paramètre de précision additive et γ est l’écart spectral du Laplacien com-

binatoire.

De cette manière, notre algorithme sert de référence classique pour les algorithmes

quantiques, car il montre que le problème peut être résolu en temps polynomial même de

manière classique, bien que pour un ensemble de paramètres plus restreint que dans le cas

quantique. En particulier, pour les complexes simpliciaux généraux, notre algorithme fonc-

tionne en temps polynomial si ε et γ sont des constantes. Dans le cas particulier des com-

plexes de cliques, nous obtenons un résultat légèrement amélioré : par exemple, si k ∈ Ω(n)
et γ est une constante, alors ε peut être inversement polynomial en n.

Test de propriété des très grands nombres de Betti

Dans le même chapitre, sur la base d’un autre article [SA25], nous examinons l’ho-

mologie simpliciale dans le cadre du test de propriétés. Ayant accès au graphe sous-jacent

d’un complexe de cliques, l’algorithme doit distinguer si βk est proche du maximum pos-

sible ou si l’entrée est à une distance ε de celui-ci. Nous montrons que la complexité de

requête de cette tâche dépend uniquement du paramètre de proximité ε, c’est-à-dire qu’elle
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est indépendante de la taille de l’entrée.

Nous utilisons une notion d’indépendance des k-simplexes qui provient de la théorie des

matroïdes, et nous désignons le nombre maximal de k-simplexes indépendants par rk. Nous
prouvons que rk ne peut pas être beaucoup plus petit que le nombre total de k-simplexes

dk. De plus, cette notion permet d’obtenir une expression élégante de βk qui inclut les pa-
ramètres dk, rk et rk−1.

Nous prouvons ensuite notre résultat, d’abord dans le cas particulier de k = 0, puis
de manière générale. Les preuves utilisent les formules mentionnées précédemment pour

montrer qu’un nombre de Betti k très élevé signifie peu de (k+1)-simplexes indépendants,

ce qui signifie également peu de (k + 1)-simplexes au total. Dans un complexe clique, un

simplexe (k+1) est une (k+2)-clique, donc dans ce cas, le graphe est proche de ne contenir
aucune (k + 2)-clique. De plus, nous pouvons montrer qu’être loin d’avoir un grand βk
implique être loin de ne contenir aucune (k + 2)-clique. De cette manière, nous réduisons

notre problème au test de propriété tolérant de l’absence de cliques de taille (k+2). On sait

que la complexité des requêtes ne dépend que des paramètres de proximité, en utilisant des

résultats bien connus [Für95, FN07].

Test de propriétés quantiques

Nos travaux présentés dans Chapitre 4 s’appuient sur [AMSS25] et lancent l’étude du

test de propriétés quantiques des graphes orientés dans le modèle à degré borné, où l’al-

gorithme a accès à la liste d’adjacence des arêtes sortantes des sommets du graphe. Nous

considérons un problème de test d’absence de sous-graphes qui est une généralisation de

l’absence de k-étoiles pour une constante k. Une k-étoile est un graphe avec (k + 1) som-

mets : un sommet central et k sommets extérieurs, et il existe une arête de chaque sommet

extérieur vers le sommet central.

Nous rappelons l’exemple donné au début de ce résumé, où des articles scientifiques se

réfèrent les uns aux autres. Cela correspond à ce modèle : lorsque nous lisons un article,

nous ne voyons que les articles qu’il cite, mais nous voulons trouver un article qui est cité

par de nombreux (k) autres, ce qui correspond exactement à une k-étoile.

Nous relions le problème de l’absence de sous-graphes au problème de k-collision de

plusieurs manières. Tout d’abord, nous proposons un algorithme pour notre problème d’ab-

sence de sous-graphes en généralisant l’algorithme de recherche de k-collisions de [LZ19]
aux graphes. De plus, nous devons prouver que cette approche fonctionne dans le contexte

du test de propriété. En particulier, ils supposent que leur entrée contient de nombreuses

k-collisions, mais nous devons prouver qu’une entrée qui est loin d’être sans sous-graphes

contient de nombreux sous-graphes qui sont disjoints dans un certain sens approprié.

Intuitivement, pour le cas particulier des k-étoiles, notre algorithme échantillonne

d’abord certains sommets et interroge leurs voisins. Ensuite, la recherche de Grover est

utilisée pour rechercher d’autres sommets qui ont un voisin déjà interrogé dans leur

voisinage, ce qui permet de trouver plusieurs étoiles à 2 branches. Grâce à des recherches

de Grover itérées, certaines de ces étoiles deviennent de plus en plus grandes jusqu’à ce

qu’une k-étoile soit trouvée.

Pour la borne inférieure, nous donnons une réduction simple du test de propriété de

l’absence de k-collisions au problème de l’absence de k-étoiles. De cette façon, il suffit de

donner une borne inférieure au premier problème, ou même à un cas particulier de celui-
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ci. En particulier, nous considérons le problème où il faut distinguer entre l’absence de

k-collisions et de nombreuses valeurs distinctes où une k-collision se produit. Ce problème

peut être facilement formulé comme une composition de fonctions booléennes simples (une

version promesse de OU et la fonction seuil) si nous utilisons un encodage binaire approprié

de l’entrée.

La méthode de borne inférieure que nous utilisons est appelée méthode polynomiale

duale, dans laquelle il faut fournir un polynôme - que nous appelons le polynôme dual - qui

certifie que tout algorithme quantique doit effectuer de nombreuses requêtes pour résoudre

le problème. Pour certaines fonctions de base, il existe des polynômes duals connus, et il

existe également des moyens de créer un polynôme dual potentiel pour une composition

de ces fonctions simples. C’est pourquoi il est important d’envisager une version de notre

problème que nous pouvons formuler ainsi.

La difficulté réside dans le fait que le polynôme que nous obtenons en utilisant ces

éléments constitutifs n’est pas encore un bon polynôme dual, car il ne satisfait pas à l’une

des contraintes qu’il devrait satisfaire. De plus, le respect d’une autre contrainte, appelée

corrélation élevée, n’est pas assuré par la construction, il faut le prouver. Nous utilisons un

résultat de [BKT20] qui résout le premier problème, il ne reste donc plus qu’à prouver la

corrélation élevée, qui est la partie la plus technique de Chapitre 4.

Nous ne pouvons pas simplement adapter la preuve d’un autre problème de test de

propriété de [BKT20], car elle utilise une propriété d’erreur unilatérale de leur fonction,

que notre fonction ne satisfait pas. Nous espérons que la manière dont nous surmontons

ce problème aidera les recherches futures à prouver des bornes inférieures pour d’autres

problèmes, voire à obtenir une méthode de borne inférieure plus générale et plus facile à

utiliser que la méthode polynomiale duale.

Enfin, nous montrons qu’il existe des propriétés de graphes, à la fois dans le modèle à

degré limité et dans le modèle dense, qui ont une complexité de requête quantique essentiel-

lement maximale. Ces deux contributions sont des adaptations de résultats similaires dans

le cadre classique, et elles reposent sur la difficulté de distinguer les séquences uniformes

des séquences « indépendantes k à k ».
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Chapter 1

Introduction

1.1 Context

Nowadays, the amount of structured digital data in our lives grows at an exceeding rate

which makes efficient information processing very important. For example, the ensemble

of all the scientific articles can be represented as a gigantic, directed network of nodes

(articles) connected by edges (references between the articles), and one could be interested

in finding an influential article, i.e. one with more than a certain number of citations. Other

examples of large networks include the world wide web, social networks, all the messages

in a messaging application, etc. Graphs are of paramount importance, when it comes to

understanding large networks like these, since they provide a natural way to represent and

analyse complex relationships inside datasets.

In general, having access to an input object of huge size, an algorithm has to solve a

problem, for example to decide whether it satisfies some property. Sometimes even merely

reading the whole data would require too much time, in this case we would like to have a

sublinear algorithm that solves the problem. Several different paradigms aim at achieving

this. One possible way is to decrease the amount of data via random sampling: by making

some assumption about the input and only looking at a small part of it, in some cases the

problem can still be solved with high probability. Another possibility is to use quantum

phenomena that can potentially speed up the computation.

On a high level, in this thesis we examine the computational speedup these techniques

can provide. On the one hand this means designing new, efficient algorithms that solve a

given problem; and on the other hand, proving lower bounds showing that no algorithm

that solves the problem can be more efficient than the lower bound. Moreover, one can

compare how efficiently a task can be solved in different models. For example, it is a major

question in quantum computing to find useful problems with an exponential quantum ad-

vantage, meaning that a quantum computer can solve them much more efficiently than a

classical machine. Hence, improving the classical efficiency of a problem like this by giving

a new algorithm is also interesting from the quantum computing perspective.

In the following, let us look at the basic models and historical background of some

relevant fields.
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1.1.1 Classical computing and query complexity

Classical computing

The theory of computing dates back to the 1930s and the work of Kurt Gödel, Alonzo

Church, Alan Turing and others. In particular, Turing introduced one of the most common

computational models, that we now call the Turing machine [Tur37].
Turing machines are important because in a way they formalise what we can call a com-

putational process or an algorithm. Moreover, according to the extended Church-Turing

thesis, efficient computations correspond to efficient Turing machines. By this we mean

that the amount of time (number of elementary steps) and space (memory) necessary for

executing the computation are approximately the same in different models. From now on

we will talk about algorithms.

A deterministic algorithm’s actions at any step are determined by its internal state and

the input. In addition to this, a probabilistic (or randomised) algorithm also has access to

some randomness which can be thought of as a coin that it can toss. The machine’s actions

can also depend on the outcome of this randomness, and in this model, it usually suffices to

succeed with probability 2/3. A third model is nondeterministic algorithms that can make

different actions in parallel, and it suffices if any of these computations succeed.

In complexity theory, an algorithm usually solves a decision problem, meaning that it

receives an input from a universe x ∈ U , and it has to output a bit representing whether

x satisfies some property, i.e. whether x ∈ P for some subset P ⊆ U . Function problems,

where the task is to output something more complex than a bit, can often be reduced to

decision problems with little overhead in the complexity. The time (resp. space) complexity

of a decision problem on input x is the number of elementary steps (bits of memory) the best

possible algorithm makes (uses) in order to decide whether the input satisfies the property.

In the following we focus on time complexity.

The time complexity of a problem usually highly depends on the length of the input, for

example deciding if the word “quantum” appears in the title of this thesis takes much less

time than searching for it in the Bible. This is why time complexity is usually expressed

as a function of the input length, where the length is usually denoted by n (or N ), and the

time complexity by T (n). This way, the time complexity T (n) of a decision problem on

inputs of length n is the number of elementary steps the algorithm needs to make in order

to decide for any input of length n whether it satisfies the property.

Moreover, constant factors are usually omitted, and only the order or growth rate of

T (n) is considered, which results in using the asymptotic notations O,Ω,Θ, o, ω. For ex-
ample, if T (n) ≤ 4n2+2n−5 thenwe say T (n) ∈ O(n2); and if T (n) ≥ 2

√
n−n1/3−1 then

we say T (n) ∈ Ω(
√
n). In this model, a computation is usually considered to be efficient if

its time complexity is at most some polynomial function of the input length.

Query complexity

Query complexity is a model of computation where the input is not given to the algo-

rithm explicitly, but as a “black box”, and the algorithm has to make queries in order to

gain information about it. This is also called oracle access: in each query the algorithm

asks “What is the i-th character of the input?”, and the oracle provides the corresponding

character. The cost of the algorithm is the number of queries it makes for deciding whether
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the input satisfies a given property.

For example, let the input be a sequence of bits x = 001010 that the algorithm does

not know, but it has access to the query operator Ox. When querying index 2, the query

operator returns the second bit of x: Ox(2) = x2 = 0. An example of a property is the

OR function, i.e. the set of inputs having at least a 1-bit. In this case, query complexity

measures the number of queries necessary (lower bound) or sufficient (upper bound) to

decide if any input sequence has at least a 1-bit.

A query algorithm corresponds to a decision tree: the first query it makes is the root

of the tree and the possible outcomes of the query correspond to the edges incident to

this node. Based on the outcome, and on some randomness in the case of a probabilistic

algorithm, another query can be made, which corresponds to the node at the other end of

the edge of the first query, and so on.

Similarly to time complexity, query complexity is usually parameterised by the input

length n: it is the number of queries necessary to solve the problem on any input of length

n. Query complexity can be associated with sublinear algorithms because making n queries
to an input of length n is trivially sufficient: in n queries the algorithm can learn the whole

input and it does not need to make any further queries. Thus, query complexity is interest-

ing when it is sublinear, i.e. o(n).

Query complexity provides a natural model of several scenarios, for example when the

input is stored on the server of a company. More generally, if the algorithm has restricted

access to a large, distant object, then it would take a lot of time or money to obtain the

whole of it. Then it is a reasonable goal to minimise the number of queries, or the amount

of information needed for the algorithm.

Compared to time complexity, this model is useful because it makes it possible to prove

lower bounds on the complexity of many problems. A lower bound f(n) on the query

complexity of a problem means showing that for any algorithm there is an input of length

n such that the algorithm needs to make at least f(n) queries to solve the problem on this

input. Lower bounds are important because they make it possible to know the exact query

complexity of a problem, otherwise we would only know upper bounds on them. This way

it is possible to show that an algorithm for a problem is essentially query optimal, i.e. there

cannot exist a more efficient way of solving it.

For example, it is in the query complexity model that one can show a lower bound on

the problem of sorting, using a comparison oracle. In particular, we have n elements, and

the way we can access them is to query pairs of elements and learn their relative order.

In this model, one can show that sorting the n elements takes Ω(n log n) queries (while
there are

(
n
2

)
element pairs). The well-known merge sort algorithm runs using O(n log n)

comparisons, so it is essentially optimal.

1.1.2 Property testing

Instead of total decision problems, where the algorithm has to decide whether the input

satisfies a property or not, one can consider partial decision problems or promise problems,
where the algorithm can assume that the inputs it receives satisfy some promise. This

way, the task becomes easier: instead of partitioning the whole input space to yes and no

instances, it has to do so only for a subset of the input space. This means that there is no

guarantee on the algorithm’s output for inputs that do not satisfy the promise. Promise
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problems were introduced in [ESY84].

An important setting where using query complexity is natural, is property testing. It
focuses on designing ultrafast algorithms (also known as testers) that read only a small

part of the input and distinguish inputs that satisfy some property from inputs that are “ε-
far” from satisfying it for some distance measure and parameter ε ∈ (0, 1), that is usually
considered to be constant. Notice that this is a promise problem: the inputs are promised

to either satisfy the property or be far from it. This field was initiated in the work of

[BK89] where the authors designed testers for checking the output of programs. Later,

several works considered this verification or self-testing aspect of property testing, see

[BLR90, EKK
+
98] and the references therein.

As a possible use-case, when the exact computation is expensive, one can use prop-

erty testing algorithms as a precursor to running the final algorithm. If the input does not

pass the property testing test, we can safely reject it, without running the expensive final

computation. Alternatively, property testing algorithms can be seen as approximation al-

gorithms for decision problems: instead of outputting an approximately correct value, it

makes a decision that is correct at least for some object that is close to the input. A third

motivation is that if a property testing algorithm usually makes the right decision, then it

is a heuristic with an additional provable guarantee, because we know that for some inputs

it is going to succeed with high probability.

Goldreich, Goldwasser, and Ron [GGR98]were the first to consider graphs in the context

of property testing. Formally, given some form of query access to an unknown graphG on

N vertices, and a property P of interest, the goal is to distinguish with high probability

if G satisfies the property P , or whether it is far from all graphs that satisfy P , with a

suitable notion of farness. In [GGR98] the “dense” graph model was considered, where a

graph is accessed through adjacencymatrix queries: querying a pair of vertices (u, v) reveals
whether u and v are linked by an edge in the graph. In this model, a graph G is ε-far from
satisfying P if one needs to add or remove at least εN2

edges of G to obtain a graph that

satisfies P .

Interestingly, there are some problems that are notoriously hard if we want to solve

them exactly, but their property testing version in the dense graph model is surprisingly

easy. For example, deciding if a graph contains a Hamiltonian cycle is not expected to be

solvable in polynomial time. But the property testing version is trivial, since from any N -

vertex graph, by adding at most N edges, we can obtain a graph with a Hamiltonian cycle,

thus in the dense graph model any graph is 1/N -close to being Hamiltonian. Another

example is 3-colourability, that is also difficult to solve exactly, but for property testing in

the dense graphmodel, it suffices to sampleO(1/ε3) vertices and check if the corresponding
induced subgraph is 3-colourable [GGR98].

In a later work, Goldreich and Ron [GR02] introduced the “bounded-degree” model for

testing sparse graphs, focusing on the properties of bipartiteness and expansion. In this

model, a d-bounded degree graph G with N vertices is accessed by performing adjacency
list queries: for a vertex v and an integer i ∈ [d], the query (v, i) returns either the i-th
neighbour of v, or some special symbol if v has less than i neighbours. The graphG is said to

be ε-far from some propertyP , if one needs to add or delete at least εdN edges ofG to obtain

a graph that satisfies P . Over the last two decades, there has been a significant number of

works in this model, and we refer the interested reader to the books by Goldreich [Gol17]

and Bhattacharyya and Yoshida [BY22] and several surveys [Fis01, Ron10, CS10, RS11].
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There is a version of property testing, where instead of distinguishing inputs that satisfy

the property from those that are ε-far, the task is to distinguish inputs that are ε′-close vs
ε-far from the property, where ε′ < ε. This is called tolerant property testing and it is closely
related to distance approximation [PRR06]. It is clearly a generalisation of usual property

testing since setting ε′ = 0 yields the usual, non-tolerant version.

1.1.3 Quantum computing

The history of quantum computing began in the 1980s with the works of Yuri Manin,

Paul Benioff and Richard Feynman [Man80, Ben80, Fey82]. The theoretical model is the

quantum version of the Turing machine introduced by Benioff [Ben80]. The idea was fur-

ther developed by David Deutsch [Deu85], who also suggested another model, based on

quantum gates, similarly to classical logic gates in circuits.

Quantum computers use quantum phenomena to perform computation in superposi-

tion. This makes the model somewhat similar to the classical models of probabilistic (ran-

domised) and nondeterministic computing. Quantum computing is more powerful than

probabilistic computing, meaning that for every randomised algorithm there exists a quan-

tum algorithm that solves the same task in the same complexity. Quantum and nondeter-

ministic computing are incomparable.

The field of quantum computing has significantly influenced many computer science

paradigms, including cryptography, algorithms, and large-scale data processing. This new

perspective on computer science, based on quantum physics, has sparked many fresh re-

search directions. This includes the topic of this thesis, which combines quantum comput-

ing, property testing and algebraic topology.

One of the fascinating aspects of quantum computing is that is permits to have sublinear

algorithms in cases where classically it is not possible. For example, a classical algorithm

looking for a “marked” element is a database of size n needs Ω(n) time to find it. For

a quantum computer, solving this task only takes O(
√
n) time, using the famous Grover

search algorithm [Gro96].

Let us recall that in classical query complexity, the algorithm has access to the input

via the query operator Ox. This operator can be modified to make it fit for dealing with

quantum algorithms that can make queries in superposition. In this case, we obtain the no-

tion of quantum query complexity. Similarly to its classical counterpart, this model is useful

because it makes it possible to prove lower bounds on the complexity of many problems.

Lower bounds are important if we want to prove separations between different models.

For example, Shor’s celebrated quantum algorithm solves integer factorisation in polyno-

mial time [Sho94], but no polynomial time classical algorithm is known for this problem.

However, no classical lower bound is known either, that would prove that any classical

algorithm needs more than polynomial time. Thus, for this extremely important problem,

the superpolynomial separation between classical and quantum algorithms is not proved,

it is only according to the current state of the art.

But there are other problems where similar separations between classical and quantum

algorithms are proved. One of the first examples of an exponential quantum advantage is

the Deutsch-Jozsa algorithm [DJ92], where we are given query access to a Boolean function

f : {0, 1}n → {0, 1} with the promise that it is either constant (takes the same value for

any input) or balanced (takes value 0 on half of the domain and 1 on the other half). The
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algorithm has to decide exactly (with error probability 0) which one is the case. Classically

this clearly takes 2n−1 + 1 queries, but the Deutsch-Jozsa quantum algorithm solves the

task with a single query.

A similar result exists in the bounded-error case. Given query access to a function

f : {0, 1}n → {0, 1} that is promised to satisfy f(x) = x · s for a hidden s ∈ {0, 1}n, find
s. The Bernstein-Vazirani quantum algorithm solves this task exactly with a single query

[BV97]. However, it can be shown that any bounded-error randomised algorithm needs to

make Ω(n) queries.

1.1.4 Topological data analysis

Recently, there has been an increasing interest in using simplicial complexes to model

higher-order relations in data sets – a technique often called topological data analysis
(TDA) [Car09]. One of the reasons for this is that it seems to be useful: it has found

applications in several domains, like in machine learning or in the analysis of images and

networks, that can be used for example in oncology and cosmology [BAD21, PEv
+
16].

Another reason is that it appears to be a candidate for a natural, useful task that could

admit an exponential quantum advantage in some cases.

Simplicial complexes are set families that are closed under the subset relation. They can

alternatively be viewed as hypergraphs with the additional constraint that if a hyperedge is

in the hypergraph then all its subsets are there too. A special case of simplicial complexes

is clique complexes, that are defined by a graph: each clique of the graph is a set in the

complex. A set of size (k + 1) that is in the complex, is called a k-face or a k-simplex.
In order to robustly classify data, a feature of particular importance is the rank of the

homology groups, called the Betti numbers of the simplicial complex, which intuitively char-

acterise the number of high-dimensional holes. This theory is called simplicial homology,

which belongs to the broader branch of algebraic topology. In particular, the so-called

persistent Betti numbers have been useful for applications because they capture a scale-

independent global property of the data set [PEv
+
16, KMH

+
21, BAD21].

In a recent paper, the authors showed that it is QMA1-hard to compute Betti numbers,

or to estimate them with relative error, even in the special case of clique complexes [CK24].

This is why the focus has been on the additive approximation of the (normalised) Betti

numbers. In [LGZ16] the authors proposed a quantum algorithm that solves this problem

in polynomial time for a set of parameters: the runtime is poly(n, 1/γ, 1/ε) where n is the

number of vertices, ε is the additive precision and γ is the (normalised) spectral gap of the

so-called combinatorial Laplacian of the complex. So far, most applications need the exact

computation of low dimensional Betti numbers, hence the estimation of high dimensional

ones was not in the focus. This is why the LGZ algorithmwas somewhat unfairly compared

to classical algorithms for Betti number computation (rather than estimation), which take

time exponential in the dimension k. This suggested that there could be an exponential

quantum advantage for this natural, useful task.

1.1.5 Collision finding and related problems

Collision finding is a ubiquitous problem in the field of algorithm theory with many

applications in cryptography, algorithms, statistics etc. Here we are given a list of bounded
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integers s = (s1, . . . , sN) ∈ [R]N and the task is to find a pair i ̸= j such that si = sj .
For example, collision resistance is an important property of cryptographic hash functions,

that have numerous information-security applications. Collision resistance means that on

a “good” hash function it is difficult to solve the collision finding problem (if we represent

the hash function as a list of integers).

This original version of the problem is well-understood both classically and quantumly:

the classical query complexity of the collision problem is Θ(
√
n) by the birthday paradox;

and its quantum query complexity isΘ(n1/3) by the BHT algorithm [BHT98] and the lower

bound of Aaronson and Shi [AS04].

However, there are some modified or generalised versions that need further research.

For example, we can consider k-collisions, where in the list of integers s = (s1, . . . , sN) ∈
[R]N we want to find a k-tuple i1, . . . , ik such that si1 = sik . Classically, it was shown

that the query complexity of this problem isΘ(n1−1/k) [HS12, PW23]. The quantum query

complexity is only settled in the special case where the input is a random string of integers,

and then the complexity is Θ

(
n

1
2

(
1− 1

2k−1

))
[LZ19].

Instead of finding, we can consider a decision version of this problem, where the algo-

rithm has to distinguishwith high probability inputs that contain at least εN collision pairs

from those that do not contain any. This version could potentially be simpler to solve, but

the classical lower bound [PW23] and the quantum lower bound for the k = 2 case [AS04]
were actually proved for the decision version. One of our goals in this thesis is to give a

lower bound for this version in the quantum setting for general k.
This version of the problem can be further generalised to graphs and it can be consid-

ered in the context of property testing. In fact, in [HS12] the authors gave an algorithm

for this more general, subgraph-freeness testing problem. For proving their lower bound

on the decision version of the k-collision problem, [PW23] used the proportional moments

technique of [RRSS09]. Then they gave reductions to obtain lower bounds on the general

subgraph-freeness property testing problem in bounded-degree directed graphs. This suc-

cessful lower bound technique of [RRSS09] has no quantum analogue yet, and a future goal

of ours is to extend it to this setting.

1.2 Overview of the results

Let us provide a short, high-level overview of the main contributions of this thesis.

1.2.1 Classical algorithms for Betti number estimation

Additive approximation of Betti numbers

In Chapter 3, the results of two articles are presented. First, based on [AGSS23], we

give a classical algorithm for the following problem. The input is a simplicial complex K
with n vertices, dk many k-simplices and k-th Betti number βk. The output is an ε-additive
estimate of the normalised Betti number βk/dk. We assume we have sampling and query

access to the input simplicial complexK . We can alternatively say that in polynomial time

we can check for a set of vertices if it is a simplex inK , and we can obtain a random simplex

of a given size.
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An important element of our algorithm is a matrix H related to the so-called combina-

torial Laplacian of the complex K . We show that the normalised trace of a high enough

power of H gives an estimate of the k-th normalised Betti number. Then we estimate this

normalised trace by noticing that it corresponds to the expectation of a random variable

that can be calculated by a Monte Carlo process.

Intuitively, we start from a random k-simplex of K and do a random walk over the

k-simplices of K with transition probabilities corresponding to the entries of H . Using a

standard concentration bound, we can upper bound the number of times we have to repeat

this process in order to obtain a good enough approximation of the k-th normalised Betti

number.

The complexity of this basic algorithm can be slightly improved by using Chebyshev

polynomials to estimate the power ofH . Moreover, for the special case whereK is a clique

complex, we can show that H is sparser than in general, which reduces the number of

repetitions necessary for obtaining the desired estimation.

It was already known before our work that quantum algorithms can solve this task

efficiently, even for large k, but no efficient classical algorithm was known in this regime.

More precisely, the time complexity of the quantum algorithm of [LGZ16] is polynomial in

n, 1/ε and 1/γ, where n is the number of vertices, ε is the additive precision parameter and

γ is the spectral gap of the combinatorial Laplacian.

This way, our algorithm serves as a classical benchmark of quantum ones, because it

shows that the problem can be solved in polynomial time even classically, although for

a more restricted set of parameters than in the quantum case. In particular, for general

simplicial complexes our algorithm runs in polynomial time if ε and γ are constants. In

the special case of clique complexes, we have a slightly improved result: for instance, if

k ∈ Ω(n) and γ is constant, then we can allow ε to be inverse polynomial in n.

Property testing very large Betti numbers

In the same chapter, based on another article [SA25], we examine simplicial homology

in the setting of property testing. Having query access to the underlying graph of a clique

complex, the algorithm has to distinguish if βk is nearly the maximum possible, or the

input is ε-far from this. We show that the query complexity of this task depends only on

the proximity parameter ε, i.e. it is independent of the input size.

We use a notion of independence of k-simplices that comes from matroid theory, and

we denote the maximum number of independent k-simplices as rk. We prove that rk cannot
be much smaller than the total number of k-simplices dk. Moreover, with this notion it is

possible to have an elegant expression of βk that includes dk, rk and rk−1.

Then we prove our result, first in the special case of k = 0, and then in general. The

proofs use the previously mentioned formulas to show that a very large k-th Betti number

means few independent (k+1)-simplices, which also means few (k+1)-simplices in total.

In a clique complex a (k + 1)-simplex is a (k + 2)-clique, so in this case the graph is close

to not containing any (k + 2)-cliques. Also, we can show that being far from having a

large βk implies being far from not containing any (k + 2)-cliques. This way, we reduce
our problem to the tolerant property testing of (k + 2)-clique-freeness. This is known to

have query complexity that only depends on the proximity parameters, using well-known

results [Für95, FN07].
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1.2.2 Quantum property testing

Our work presented in Chapter 4 is based on [AMSS25], and it initiates the study of

quantum property testing of directed graphs in the bounded degree model, where the algo-

rithm has query access to the adjacency list of the outgoing edges of the graph’s vertices.

We consider a subgraph-freeness testing problem that is a generalisation of k-star-freeness
for constant k. A k-star is a graph with (k + 1) vertices: one centre vertex and k outer

vertices, and there is an edge from each outer vertex to the centre.

We recall the example at the beginning of this introduction, where scientific articles

refer to each other. This fits into this model: when reading an article, we only see the

articles it cites, but we want to find an article that is cited by many (k) others, which is

exactly a k-star.
We connect the subgraph-freeness problem to the k-collision problem in multiple

ways. First, we give an algorithm for our subgraph-freeness problem by generalising the

k-collision finding algorithm of [LZ19] to graphs. Moreover, we need to prove that this

approach works in the property testing context. In particular, they assume that their input

contains many k-collisions, but we have to prove that an input that is far from

subgraph-freeness, contains many subgraphs that are disjoint in some appropriate sense.

Intuitively, for the special case of k-stars, our algorithm first samples some vertices and

queries their neighbours. Then Grover search is used to look for other vertices that have

an already queried neighbour in their neighbourhood, and thus several 2-stars are found.

With iterated Grover searches, some of these stars grow into larger and larger stars until

one k-star is found.
For the lower bound, we give a simple reduction from the property testing of k-collision-

freeness to the k-star-freeness problem. This way, it suffices to give a lower bound on

the former problem, or even a special case of it. In particular, we consider the problem

where one has to distinguish between no k-collisions and many distinct values where a k-
collision occurs. This problem can be easily formulated as a composition of simple Boolean

functions (a promise version of OR and the threshold function) if we use an appropriate

binary encoding of the input.

The lower boundmethod we use is called the dual polynomial method, where one needs

to provide a polynomial – that we call the dual polynomial – that certifies that any quan-

tum algorithm needs to make many queries in order to solve the problem. For some basic

functions there exist known dual polynomials, and there are also some ways to create a

potential dual polynomial for a composition of these simple functions. This is why it is

important to consider a version of our problem that we can formulate like this.

The difficulty is that the polynomial we obtain by using these building blocks, is not yet a

good dual polynomial, because it does not satisfy one of the constraints it should. Moreover,

satisfying another constraint, called high correlation, is not provided by the construction,

one needs to prove it. We use a result from [BKT20] which fixes the first issue, so the

only remaining task is to prove the high correlation, which is the most technical part of

Chapter 4.

We cannot simply adapt the proof of another property testing problem from [BKT20],

because it uses a one-sided error property of their function, that our function does not

satisfy. We hope that the way we overcome this issue is going to help future research to

prove lower bounds for other problems, or even to obtain a more general lower bound

method that is easier to use than the dual polynomial method.
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Finally, we show that there are graph properties, both in the bounded degree and in

the dense model, that have essentially maximal quantum query complexity. Both these

contributions are adaptations of similar results in the classical setting, and they rely on the

hardness of distinguishing uniform sequences from “k-wise independent” ones.
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Chapter 2

Preliminaries

In this chapter we introduce some notations, models and results that we will use

throughout the thesis. In later chapters we will remind the reader of some of these before

using them.

2.1 Notations and basic definitions

Let us denote [n] = {1, . . . , n} and [n]0 = {0, . . . , n}. Let N,Z,Q,R,C respectively

denote the set of nonnegative integers, integers, rational numbers, real numbers and com-

plex numbers. Moreover, for any prime number p let Fp denote the finite field of integers

modulo p.
For a set S, its size (cardinality) or the number of its elements is denoted by |S|. The

power set of S (i.e. the set family of all subsets of S) is denoted by 2S . For any nonnegative
integer k ≤ |S|, the set family of all the size-k subsets of S is denoted by

(
S
k

)
. Note that the

size of set family

(
S
k

)
is exactly the usual binomial coefficient

(|S|
k

)
, and the size of 2S is 2|S|.

If we allow repetitions (but the order does still not count), we get multisets, and the

set of size-k multisets with elements from S is denoted by

((
S
k

))
. The size of this set is((

|S|
k

))
=
(|S|+k−1

k

)
, also known as the multiset coefficient or the number of k-element

combinations of |S| objects with repetition.

A string (of characters) is some x ∈ Σn
where Σ is the alphabet and n is the length of x.

In the special case of bitstrings,Σ = {0, 1}. The Hamming weight of a bitstring x ∈ {0, 1}n
is |x|H = |{i ∈ [n] : xi = 1}|, i.e. it is the number of 1s in x.

When writing log without specifying the base, we mean log2 (binary logarithm). Nat-

ural logarithm is denoted by ln. On the other hand, when using notation exp(f), we mean

ef . The expected value of a random variableX is E[X], and more generally its kth moment

is E[Xk]. The sign function sgn assigns −1 to negative values, 1 to nonnegative values.

When it is applied on vectors it acts elementwise.

The usual composition of two functions f : A → B and g : B → C , is denoted by

g ◦ f : A → C , and it is the application of g on the result of f , i.e. for any x ∈ A,
(g ◦ f)(x) = g(f(x)). In the case of multivariate functions f : An → B and g : Bm → C ,
we define a different kind of composition: g⊙f : Anm → C , such that for any x ∈ Anm also

denoted as x = (x1, x2, . . . , xm)with ∀i ∈ [m] xi = (xi,1, xi,2, . . . , xi,n) ∈ An, (g⊙f)(x) =
g(f(x1), f(x2), . . . , f(xm)).
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Notations O(·), Ω(·) and Θ(·) hide constant factors and dependencies on parameters

that are considered to be constants. Moreover, when augmentedwith the tilde notation they

also hide factors that are polylogarithmic in the argument. For example, f(n) ∈ Õ(g(n))
means that there exists some constant k such that f(n) ∈ O(g(n) logk g(n)).

Graph theory

An undirected graphG = (V,E) is a pair of a vertex set V and an edge set E. The latter
consists of edges that are unordered pairs of vertices: for u, v ∈ V saying that u and v are
connected by an edge is equivalent to {u, v} ∈ E. We say that there is a path between

s = v0 and t = vl+1 (with s, t ∈ V ) if there exists an integer l and vertices v1, . . . , vl ∈ V
such that v0, v1, . . . , vl+1 are all distinct and ∀i ∈ [l]0 : {vi, vi+1} ∈ E. A graphG = (V,E)
is called connected if for every u ∈ V and v ∈ V \ {u}, there exists a path between u and v.

A digraph or directed graph is like an undirected one, but the edges are directed (and are
often called arcs): a directed edge is an ordered pair of vertices, and (u, v) ∈ E means that

there is a directed edge from u to v. Similarly to the undirected case, we say that there is a

directed path from s = v0 to t = vl+1 (with s, t ∈ V ) if there exists an integer l and vertices
v1, . . . , vl ∈ V such that v0, v1, . . . , vl+1 are all distinct and ∀i ∈ [l]0 : (vi, vi+1) ∈ E. A
digraph G = (V,E) is called strongly connected if for every u ∈ V and v ∈ V \ {u}, there
exists a directed path from u to v (and thus from v to u as well).

In a context where there are several graphs, we can emphasise which graph’s vertices

or edges we mean: for a graphG its vertex set is V (G) and its edge set isE(G). A subgraph
of an undirected (resp. directed) graph G = (V,E) is any graph G′ = (V ′, E ′) satisfying

V ′ ⊆ V , E ′ ⊆ E and E ′ ⊆
((

V ′

2

))
(resp. E ′ ⊆ V ′×V ′

). Notice that these definitions allow

self-loops (i.e. edge from a vertex v to itself) but no parallel edges of the same kind (i.e. no

two edges from vertex v to u).

2.2 Query complexity

In the query complexity model, we consider inputs x ∈ ΣI
over a finite alphabet Σ and

indexed by a set I . They are not given explicitly to the algorithm. Instead, the algorithm

has query access (or black box access) to an input oracle Ox encoding x. This means that

the algorithm can query each character of x: for any i ∈ I it learns Ox(i) = xi.

As examples, let us look at two kinds of inputs that are ubiquitous in discrete mathemat-

ics: strings of integers and graphs. When the input is a string s = (s1, . . . , sN) of positive
integers ≤ R, then I = [N ] and Σ = [R].

In the case of graphs, there are multiple options. In the dense graph model, the algorithm
has query access to the adjacency matrix of the graph. For a graph with vertex set V , this

yields I = V × V and Σ = {0, 1}. That is, querying a vertex pair (u, v) tells us if they are

connected by an edge in the graph or not. For undirected graphs, querying (u, v) and (v, u)
is equivalent, but in the directed case the order matters.

In the bounded degree model, we query the adjacency list of the graph. For a graph

with vertex set V and degree bound d, we have I = V × [d] and Σ = V ∪ {⊥}. Here
we assume that each vertex fixed an order of its neighbours, and a query (v, i) returns
the i-th neighbour of v if it exists, and a special character ⊥ otherwise. In the case of
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undirected graphs, this is well-defined, but for directed graphs there are two options. In

the unidirectional model, the algorithm only has access to the list of out-neighbours. On the

other hand, in the bidirectional model, there are two lists: one for the out-neighbours and

one for the in-neighbours, so the algorithm has to specify if it would like to learn the i-th
in- or out-neighbour of v. This can be achieved, for example, by the query containing one

further bit.

A property is a predicate P : DP → {0, 1} over domain DP ⊆ ΣI
. Equivalently, it can

be interpreted as a subset of the domain: {x ∈ DP : P (x) = 1} (in Section 2.3 this subset

is denoted by P = ΠYES). The (randomised) query complexity of a property measures the

minimum number of queries that an algorithm has to make in order to decide with high

probability whether the property holds for any input. This is called worst-case complexity
because the algorithm has to make the right decision for every input, even the “hardest”

inputs (with high probability). This is in contrast with average case complexity, where the

input is taken from a distribution and thus the error probability over both the algorithm’s

internal randomness and the input has to be small, i.e. on inputs that the algorithm receives

with low probability, it can err. In this thesis, we only consider worst-case complexity.

2.3 Property testing

We assume that the input of an algorithm is taken from a universe that is some set U .
A property P is a subset of U , and we say that an input x ∈ U satisfies P if x ∈ P . In total
decision problems, the algorithm receives an input x ∈ U , and it has to decide if x satisfies

a property P or not, i.e. if x ∈ P or x ∈ U \ P .

In promise problems (or partial decision problems), the algorithm can assume that it will

only receive inputs that satisfy a promise which is a subset of the universe U ′ ⊆ U . This
way, the task becomes easier: the algorithm only has to distinguish between x ∈ ΠYES =
P ∩ U ′

or x ∈ ΠNO = (U \ P) ∩ U ′
. It is important to note that the algorithm may receive

any input from U , but it only has to satisfy some guarantees for inputs from U ′
.

Gap problems are a special case of promise problems where the algorithm is promised

to only receive inputs that are either in P or “ε-far” (according to some distance measure

and parameter ε) from any input in P . Here ΠYES = P and ΠNO is the set of inputs that

are ε-far from P .

ε↔ΠYES ΠNO

Figure 2.1 – Depiction of gap problems. The whole rectangle is U and the white area is U ′
.

In the case of property testing, the algorithmhas to solve a gap problemwith high success
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probability, i.e. it has to distinguish inputs that satisfy the property from those that are

“far” from the property. Before defining property testing algorithms, we need to discuss

the distance measure that is used in the definition.

The choice of distance measure usually depends on the query model considered. As

discussed before, in general, query access can be viewed as black box access to the input

x ∈ ΣI
where querying an index i ∈ I reveals xi ∈ Σ. This way, the distance of two objects

is defined as the proportion of positions where they differ. Again, a property P is just a set

of inputs: P ⊆ ΣI
.

Definition 2.3.1. The distance of two inputs x, y ∈ ΣI is defined as

dist(x, y) =
|{i ∈ I : xi ̸= yi}|

|I|
,

We say that x is ε-far from property P if dist(x, y) > ε for all y ∈ P .

In the case of graphs, the usual distance measures count the number of edges that one

needs to add or delete in order to transform a graphG to another oneG′
. Since the number

of vertices cannot change in this way, we can only compare graphs that have the same

number of vertices: |V (G)| = |V (G′)|. But in general, the two vertex sets can be different

(i.e. we do not know how to relate the vertices in V (G) to the ones in V (G′)), that is why
invariance under any permutation (or relabelling) of vertices is required. In fact, a graph
property is defined as a set of graphs that is closed under graph isomorphism [Gol17].

Remark 2.3.2. This difference, that for general properties we do not require permutation
invariance but for graph properties we do, may seem strange at first, but it only reflects how
the different objects are usually used. In most applications, the labels of the graph vertices
are not important, we are only interested in the overall structure of the graph (e.g. is there
a Hamiltonian cycle). But in string problems, the positions and values are often crucial (e.g.
pattern matching) which means no permutation invariance. However, for some special string
problems it canmake sense to consider a permutation invariant distancemeasure: e.g. collision-
type properties (like k-collision-freeness in Chapter 4) admit an invariance over permutations
of both the positions and of the alphabet.

For example, in the dense graph model (where we have query access to the adjacency

matrix of the graph) the distance of two graphsG andG′
with |V (G)| = |V (G′)| is defined

as dist(G,G′) = minπ{G△π(G′)}
n2 , where π is any permutation of the vertices and △ denotes

the symmetric difference of the two edge sets. So, the distance is the number of edges where

the two graphs differ (up to isomorphism) divided by an upper bound on number of edges

(sometimes the denominator is set to

(
n
2

)
instead of n2

).

In the case of bounded-degree graphs with degree bound d (where we have query access
to the adjacency list), the distance of two graphs is similarly defined as the number of edges

where they differ (up to isomorphism) divided by |V |d.
Now let us define property testing and its tolerant version.

Definition 2.3.3. Let 0 < ε < 1 be a constant and P a property. A randomised algorithm A
is an ε-tester for the property P if

1. For all x ∈ P : Pr[A(x) = accept] ≥ 2/3;
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2. For all x that are ε-far from P : Pr[A(x) = accept] ≤ 1/3.

The probabilities are taken over the randomness of A.

Notice that no restriction is given on the acceptance probability of the property testing

algorithm for inputs that do not satisfy P but are ε-close to it (the grey zone in Figure 2.1).

Definition 2.3.4. Let 0 < ε1 < ε2 < 1 be constants and P a property. A randomised
algorithm A is an ε1-tolerant ε2-tester for the property P if

1. For all x that are ε1-close to P : Pr[A(x) = accept] ≥ 2/3;

2. For all x that are ε2-far from P : Pr[A(x) = accept] ≤ 1/3.

The probabilities are taken over the randomness of A.

We call a property P (tolerantly) testable if there is a (tolerant) property testing algo-

rithm such that the number of queries it makes is independent of the input length, it only

depends on the distance parameter(s).

2.4 Hoeffding’s inequality

In the field of randomised algorithms, it a very common technique to repeat a random

procedure several times in order to obtain better guarantees on the outcome, such as a

smaller variance. One of the most well-known results here is Hoeffding’s inequality. Some

of our proofs depend on this result, and we are going to use two variants of it.

Lemma 2.4.1 (Hoeffding’s Inequality [Hoe63], see also [DP09]). Let X1, . . . , Xt be inde-

pendent random variables such that a ≤ Xi ≤ b and let Xavg = 1
t

t∑
i=1

Xi. Then, for any

δ > 0,

Pr
[
|Xavg − E[Xavg]| ≥ δ

]
≤ 2 exp

(
−2tδ2

(b− a)2

)
.

For one sided deviation, the same result holds without the factor 2 in front of the ex-

ponential term. In the special case where all the Xi are identically distributed Bernoulli

random variables (i.e. a = 0 and b = 1) this yields the following statement.

Corollary 2.4.2. Let X1, . . . , Xt be independent Bernoulli random variables with the same

expected value E[X1], and letXsum =
t∑
i=1

Xi (thus E[Xsum] = t ·E[X1]). Then, for any δ > 0,

Pr [Xsum − t · E[X1] ≥ δ] ≤ exp
(
−2δ2/t

)
.

2.5 Quantum computing

In classical computing, the unit of information is a bit. A bit can be in either one of two

states that are commonly denoted by 0 and 1. Quantum mechanical phenomena show us

that elementary particles can be in a superposition of states. Using these phenomena, one

can create quantum bits or qubits: a qubit can be in a superposition of basis states 0 and 1.

For more formal definitions let us start with some linear algebra.
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2.5.1 Some linear algebra

AHilbert space is a complete vector space equipped with an inner product. In this work,

we use finite dimensional Hilbert spaces over the field of complex numbersC. The complex

conjugate of a number z ∈ C is z̄, and its absolute value is |z| =
√
zz̄ ≥ 0.

Using the Dirac or bra-ket notation, a (column) vector is denoted by |v⟩ and its conjugate
transpose by ⟨v|. The inner product of two vectors |u⟩ , |v⟩ ∈ Cn

is ⟨u|v⟩ =
∑

i∈[n] ūivi ∈ C,
and their outer product is |u⟩⟨v| =M ∈ Cn×n

withMi,j = uiv̄j for all i, j ∈ [n].

Let p be a positive integer, then the p-norm of a vector |v⟩ ∈ Cn
is defined as ∥|v⟩∥p =(∑

i∈[n] |vi|p
)1/p

. For example, the 1-norm is just the sum of the absolute values of the

vector elements. For amatrixM ∈ Cn×m
, its 1-norm is themaximum 1-norm of its columns

∥M∥1 = maxj∈[m]

∑
i∈[n] |Mi,j|.

The trace of a matrixM ∈ Cn×n
is Tr(M) =

∑
i∈[n]Mi,i. It is also equal to the sum of

the eigenvalues ofM (with multiplicities).

The adjoint (conjugate transpose) of a matrixM is denoted byM∗
. A matrixM ∈ Cn×n

is called Hermitian ifM =M∗
; and it is called unitary ifMM∗ = I where I is the identity

matrix of size n×n. A Hermitian matrixM ∈ Cn×n
is called positive semidefinite (or PSD)

if for all |v⟩ ∈ Cn
, the real number ⟨v|M |v⟩ ≥ 0.

The usual tensor product of vector spaces Ca
and Cb

is denoted by Ca⊗Cb = Cab
. The

tensor product of vectors |u⟩ and |v⟩ is |u⟩ ⊗ |v⟩ also denoted as |u⟩ |v⟩, as |u, v⟩ or even as

|uv⟩. The tensor product of matricesM ∈ Ca1×b1
andM ′ ∈ Ca2×b2

isM⊗M ′ ∈ Ca1a2×b1b2
.

2.5.2 The postulates of quantum computing

In this section we describe what are often called the four postulates of quantum com-

puting.

Qubit A qubit is a unit vector fromC2
. We denote the standard basis vectors of this space

by |0⟩ =

[
1
0

]
and |1⟩ =

[
0
1

]
. This way, any qubit can be expressed as α |0⟩ + β |1⟩ with

α, β ∈ C and |α|2 + |β|2 = 1. The scalars α and β are called probability amplitudes.
As α and β are complex numbers, they can alternatively be written in the exponential

form: α |0⟩ + β |1⟩ = |α|eiφα |0⟩ + |β|eiφβ |1⟩ = eiφα(|α| |0⟩ + |β|ei(φβ−φα) |1⟩). Here |α|
and |β| are reals from interval [0, 1] (still satisfying |α|2 + |β|2 = 1); φα is called the global

phase and the phase difference φ = φβ − φα is called the relative phase. Both phases are

reals from [0, 2π). Changing the global phase has no observable consequences, it leaves the
qubit unchanged. The relative phase φ is important, for example it explains interference,

and thus it is called the phase of a qubit.

Register A system that consists of several qubits is called a quantum register and it

is a vector in the tensor product space. For example, a 2-qubit system is a unit vector

from C4 = C2 ⊗ C2
that can be written as a linear combination of the standard basis

vectors |00⟩ , |01⟩ , |10⟩ , |11⟩. Integers are often used instead of their binary encodings:
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|0⟩ , |1⟩ , |2⟩ , |3⟩. We will call unit vectors in Hilbert spaces (quantum) states 1.
If a quantum state can be written as a tensor product of individual qubits, it is called

separable, and otherwise it is entangled. For example,
1√
2
(|00⟩+|01⟩) = |0⟩⊗ 1√

2
(|0⟩+|1⟩) is

separable and
1√
2
(|00⟩+|11⟩) is entangled. Entanglement is a commonly used phenomenon

for example in quantum computing and communication.

Time evolution Quantum states can be transformed using unitary transformations, of-

ten called quantum gates. For example, if an n-qubit state |ψ⟩ ∈ C2n
is transformed to

another state |ϕ⟩ ∈ C2n
by unitary U ∈ C2n×2n

, then we can write U |ψ⟩ = |ϕ⟩. Unitarity
corresponds to reversible transformations.

Examples of commonly used, elementary quantum gates include the Pauli X (bit flip)

and Z (phase flip) gates, the Hadamard gate H and the 2-qubit controlled-X (CNOT) gate.

The T gate shifts the phase by π/4 and is linked to the Z gate by Z = T 4
.

X =

[
0 1
1 0

]
, T =

[
1 0
0 eiπ/4

]
, H =

[
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

]
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Measurement In this work we are not going to use precise details about measurements,

so instead of a long formal definition it suffices to give a simple intuitive example. When a

register is measured in the standard basis, it is “forced” into one of the standard basis states.

If the n-qubit register being measured this way is

∑2n−1
j=0 αj |j⟩ then by the Born rule, the

outcome of the measurement is |j⟩ with probability |αj|2 for all j ∈ [2n − 1]0.

2.5.3 Some models in quantum computing

There are several models of quantum computing (e.g. quantum Turing machine, adia-

batic model, quantum annealing), in this thesis only the circuit model is considered. Here a
procedure can be given as a quantum circuit, similarly to classical logic circuits.

Circuit model

In a quantum circuit, qubits (or registers) are drawn as horizontal lines with their initial

value written on the left-hand side. Then a sequence of quantum gates U (for unitary U )

and measurements is applied on them (from left to right). The contol of controlled

operations is denoted by and it means that the application of the linked gate depends on

the value on this wire. After a measurement, the value on the wire becomes classical which

is denoted by a double wire.

It is preferable that a quantum circuit only contains small, 1 or 2-qubit elementary gates
that are relatively easy to implement physically. Similarly to their classical counterparts,

quantum circuits also have universal gate sets that are sufficient to implement any unitary

1. In fact, these vectors are usually called pure states. More generally, a quantum state can be a mixed

state that is a probabilistic combination of pure states and is commonly represented by a density matrix. In

this work, we are not going to use mixed states.

17



|ψ⟩

|0⟩

|0⟩ |ψ⟩

H

H X

X X Z

Figure 2.2 – Example of a circuit that implements quantum teleportation.

transformation with high precision without making the circuit too large. An example of

a universal gate set is {H,T,CNOT}. Taking accuracy into account makes this question

more subtle, but in this thesis we do not go into more details.

An example of a quantum circuit can be seen in Figure 2.2. It serves as a depiction of the

mentioned elements, and we do not go into details about each step of it. The main idea is

that using entanglement and classical communication it is possible to “teleport” any qubit

|ψ⟩. By this we mean that originally, we have |ψ⟩ somewhere, but at the end of the protocol

it can be far away from it, without moving the original qubit.

According to the deferred measurements principle (see e.g. [AKN98]), every intermediate

measurement can be postponed to the end of the computation without changing the output

distribution. The transformation that allows this, introduces as many extra qubits as the

number of postponed measurements. This way, a circuit can be represented by a single

unitary transformation followed by some measurements. This is often useful, for example

when using some lower bound methods (see e.g. Section 2.5.4).

If our quantum algorithm solves a decision problem, the output depends on some mea-

surement outcomes. As there is inherent randomness involved in quantum algorithms, we

are usually satisfied with bounded error. Hence, we say that the algorithm solves the prob-

lem if it has small error probability. The space complexity of a quantum algorithm is the

number of qubits it uses, and its time complexity is the number of elementary gates in the

circuit.

Quantum query complexity

Quantum query complexity is similar to the classical version discussed earlier, but now

the query operator has to be unitary, and in the case of input x ∈ ΣI
one way to define

it is as follows: Ox |i⟩ |z⟩ = |i⟩ |z ⊕ xi⟩, for z ∈ Σ and i ∈ I , where ⊕ is usually the sum

modulo |Σ| operation , but one could choose any reversible operation ⊕. This version is

called qubit-query. In the Boolean case, whenΣ = {0, 1}, we getOx |i⟩ |z⟩ = |i⟩ |z ⊕ xi⟩ =
(1− xi) |i⟩ |z⟩+ xi |i⟩ |1− z⟩.

Alternatively, the query operator can give the query outcome in the phase, which ver-

sion is called phase-query. For this version, we identify each element of Σ with an integer

from [|Σ|] in a bijective manner. The phase query operator acts asO±
x |i⟩ |z⟩ = ωz·xi |i⟩ |z⟩,

for z ∈ Σ and i ∈ I , where ω is the |Σ|-th root of unity, i.e. ω = ei2π/|Σ|
. For exam-

ple, if x ∈ {0, 1}n and the initial state is the uniform superposition over the indices then

O±
x

∑
i∈[n] |i⟩ |1⟩ =

∑
i∈[n](−1)xi |i⟩ |1⟩. So, in the resulting state exactly those indices get

phase -1 where x contains a 1-bit. One can show that the two quantum query models are

equivalent, i.e. one type of query can be simulated by the other type.

18



Quantum memory models

The memory model is an important question in any computational model. In classical

computing, the algorithm is executed by the CPU and the memory, RAM, is another device

with a different physical implementation. For various applications, quantum computers

need a similar but quantum memory, usually called QRAM. For a survey on QRAM see

[JR23], below we shortly mention some important aspects.

Both the data stored and the access to it (addressing) can be either classical or quantum.

Classical Random-Access Classical Memory (CRACM) yields the usual classical RAM. Clas-

sical Random-Access Quantum Memory (CRAQM) corresponds to a classical control of the

qubits. From the memory point of view the two most relevant versions are the ones with

quantum access. In the case of Quantum Random-Access QuantumMemory (QRAQM), the

data is stored in a quantum register and the algorithm can read andwrite it in superposition.

In this work, we do not need QRAQM.

Quantum Random-Access Classical Memory (QRACM) is the variant we are going to

use in this thesis. For quantum algorithms that solve classical problems, it usually suffices

to store classical information about the input in their memory. But for leveraging quantum

phenomena, it is necessary to have quantum access to it (i.e. to be able to address data in

superposition). This means that the data is stored in a classical table T : for example, in

the case of binary n-bit data, T ∈ {0, 1}n. It is addressed by a quantum register of ⌈log n⌉
qubits, and there is an additional qubit for the output. QRACM means access to a unitary

UT such that UT |i⟩ |b⟩ = |i⟩ |b⊕ Ti⟩. In fact, this is exactly what we assume in the case

of quantum query complexity: the physical implementation of the input oracle would be a

QRACM.

Similarly to classical RAM, we usually assume that QRAM access takes negligible time

compared to other steps of an algorithm. Unfortunately, this assumption is not yet experi-

mentally justified.

2.5.4 The polynomial method

The polynomial method is a lower bound technique for quantum query complexity,

introduced in [BBC
+
01]. In its simplest version, we have a Boolean alphabet (i.e. Σ =

{0, 1}), and the algorithm has to compute a total function f : {0, 1}n → {0, 1} with high

probability for any input x ∈ {0, 1}n, and the algorithm can use the query operator Ox.

Definition 2.5.1 (approximate degree). Let f : {0, 1}n → {0, 1} and ε > 0. A polynomial
p : {0, 1}n → R ε-approximates f if ∀x ∈ {0, 1} : |f(x) − p(x)| < ε. Moreover, the
ε-approximate degree degε(f) of f is the smallest degree of such a polynomial.

Using the following result, it is possible to prove lower bounds on the quantum query

complexity of several problems – we are going to use it in Section 4.4. We give an overview

of the proof.

Theorem 2.5.2. Let f : {0, 1}n → {0, 1}. If a quantum algorithm, having query access to
any input x ∈ {0, 1}n, computes f(x) with error probability at most 1/3, then the algorithm
needs to make at least deg1/3(f)/2 many queries.

Proof sketch. Using the deferred measurements principle, every quantum query algorithm

can be represented like the circuit in Figure 2.3: first it performs some input-independent
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|0⟩X . . .

|0⟩Y . . .

|0⟩W . . .

U0 Ox U1 Ox Ox Uq

Figure 2.3 – The circuit of a quantum query algorithm.

operations represented by a unitary U0, then it makes a query by using unitary Ox, then

some further input-independent operations U1, etc. The circuit has three registers: X of n
qubits for the query, Y of a single qubit for the answer, and the other qubits that we call

the work registerW . From now on, we omit the work register.

The state of the algorithm just before making the (t + 1)-th query is

|ψt⟩ = UtOxUt−1Ox . . . U0 |0, 0⟩. At the beginning, |ψ0⟩ = U0 |0, 0⟩ does not depend

on input x because at this stage no query has been made yet. Let us say that

|ψ0⟩ =
∑2n−1

j=0

∑1
z=0 α

(0)
j,z |j, z⟩, where the amplitudes α

(0)
j,z are degree-0 polynomials in the

xi variables. For induction, let us assume that after t queries it is still true that in

|ψt⟩ =
∑2n−1

j=0

∑1
z=0 α

(t)
j,z |j, z⟩ all the amplitudes α

(t)
j,z are polynomials of degree at most t.

Then let us look at what happens when we apply the query operator on |ψt⟩.

Ox |ψt⟩ =
2n−1∑
j=0

1∑
z=0

α
(t)
j,zOx |j, z⟩ =

2n−1∑
j=0

1∑
z=0

α
(t)
j,z((1− xj) |j, z⟩+ xj |j, 1− z⟩)

By the induction hypothesis, in timestep t every α
(t)
j,z is a polynomial of degree at most t in

the xi variables, and by the above expression, the new amplitudes’ degrees only increase

by one. Since unitary Ut+1 does not depend on the input, it cannot increase this degree. We

can conclude that if the algorithm makes q queries, then the degree of its amplitudes in the

state before the measurement is a polynomial of degree at most q. Since the algorithm’s

output depends on some measurement outcomes on this state, the probability of outputting

any bit, say 1, is a polynomial p of degree at most 2q because of the Born rule.

Now if this q-query algorithm computes f with probability at least 2/3 on every input

x, then this polynomial p(x) has to be close to f(x) for every x ∈ {0, 1}n: in particular,

p is 1/3-approximating polynomial of f . Thus, since we know that any 1/3-approximating

polynomial of f has degree at least deg1/3(f), it follows that the quantum query complexity

of f is at least deg1/3(f)/2.

Example 2.5.3. Let f{0, 1}n → {0, 1} be the PARITY function: it is 0 if the input contains
an even number of 1s and it is 1 otherwise. Since the problem is symmetric, i.e. it is invariant
under any permutation of the input bits, it suffices to only consider the Hamming weight of
the input x: we denote f ′ : [n]0 → {0, 1} the symmetrised version of f . Instead of looking
at polynomials over all the xi, we can use the symmetrised version of those too: this way the
degree can only decrease, so a lower bound on the symmetric version’s degree implies a lower
bound on the original degree.

It is clear that f ′ is alternating: f ′(0) = 0, f ′(1) = 1, f ′(2) = 0, f ′(3) = 1, . . . .
Consequently, any approximating polynomial p of f ′ needs to satisfy p(0) ≤ 1/3, p(1) ≥
2/3, p(2) ≤ 1/3, p(3) ≥ 2/3, . . . . Because of this fluctuation, polynomial p − 1/2 has n
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zeroes, thus p has degree at least n. Using the polynomial method (Theorem 2.5.2), a quantum
query complexity lower bound of n/2, i.e. Ω(n) follows.

2.5.5 Grover’s algorithm

One of the most well-known quantum algorithms is Grover’s algorithm for unordered

search (or Grover search) [Gro96]. Here the input is a list of n elements, t of which are

“marked”, and one has to find a marked element. An alternative, decision version of the

problem is binary OR with a promise: given as input a Boolean function f : D → {0, 1}
with |D| = n, that is promised to satisfy either |f−1(1)| = t or |f−1(1)| = 0, the task is to

decide which is the case, i.e. if there is an x ∈ D such that f(x) = 1. Classically, the com-

plexity of solving this problem with high (constant) probability is Θ(n/t), but quantumly

it is Θ(
√
n/t) [Gro96, BBHT99]. This remains true in expectation even when the number

of solutions t is not known in advance.

We are going to use a particular variant of this result, that has been used many times

in the literature (see e.g., [Amb04, Item 3 in Section 2.2], which was implicitly proved in

[BBHT99]).

Theorem 2.5.4. Let 1 ≤ t0 ≤ N . There exists a quantum algorithm that, given t0 and query
access to any function f : D → {0, 1}, makesO(

√
N/t0) queries to f and outputs either “not

found” or an element uniformly at random in f−1(1). Moreover, when |f−1(1)| ≥ t0 the later
occurs with high constant probability.

Remark 2.5.5. In practice, we will use this theorem when querying f(x), for x ∈ D, requires
making c queries to the input. In that case the total query complexity to G is O(c

√
N/t0).

Let us look at two modifications of this problem.

— If the number of marked elements is t, and an upper bound t1 ≥ t is known, then
finding all the marked elements with probability 1 takesΘ(

√
nt1) queries. It is a well-

known result, to the best of our knowledge it was first formally proved in [dGdW02,

Lemma 2]. See also the recent work of [vAGN24], where the authors make a tight

resource analysis of this algorithm.

— Finding a minimum (or a maximum) of a set of n elements with high probability can

be done in Θ(
√
n) queries [DH96].

An important generalisation of Grover search is called amplitude amplification, where

we are given black-box access to an algorithmA that returns a state |ψ⟩. This state |ψ⟩ is a
superposition over a set of elements some of which are “good”, and if |ψ⟩ is measured, the

probability of a good outcome is p. Classically, if we want to boost the probability of getting
a good output to a constant (say 2/3) then we have to repeat A Θ(1/p) times. Quantumly,

as a generalisation of Grover search, it suffices to repeat it Θ(1/
√
p) times [BHMT02]. We

formalise this in the next theorem statement.

Theorem 2.5.6. Let A be a quantum algorithm that does not make any measurements and
returns a state |ψ⟩ that, when measured, the probability of a “good” outcome is p > 0. Then
there is another quantum algorithm that, not knowing the value of p and having black-box
access toA and its inverse, makes O(1/

√
p) calls toA and its inverse, and returns a state |ψ′⟩

that, when measured, the probability of a good outcome is 2/3.
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Grover’s algorithm, minimumfinding and amplitude amplification are used as a subrou-

tine in many quantum algorithms, because search is ubiquitous in algorithm design. Since

the quadratic speedup of search is tight by the lower bound of [BBHT99], most problems

admit at most quadratic quantum speedup in some of their subprocedures. Later in the

thesis we are also going to use Grover search as a subroutine.

Just like any quantum algorithm, Grover search and its variants have some bounded (at

most some constant) error probability. Because of this, when they are used as a subroutine,

sometimes even in a nested way, the error can accumulate and make the error probability

of the overall algorithm large. To prevent this from happening, one can reduce the error

probability of each Grover instance to inverse polynomial by repeating it several times. The

overhead is maximum a factor of log(1/δ) to achieve error probability at most δ, and this

overhead counts as negligeable in this thesis. Thus, from now on we assume that Grover

search and its variants return a solution in Θ̃(
√
n/t) queries without error.

2.6 Simplicial complexes and Betti numbers

An (abstract) simplicial complex over a set V of vertices is a set family of subsets of V ,

that is downward closed under the subset relation. It is called abstract because it is a purely

combinatorial object with no associated geometry, in contrast with a geometric simplicial

complex. In this thesis, we focus on finite abstract simplicial complexes, where the vertex

set V is finite. A simplicial complex can be thought of as a higher-dimensional generali-

sation of graphs, or as a restricted hypergraph with the additional downward closedness

constraint.

Definition 2.6.1 (Simplicial complex). A simplicial complexK is a collection of finite subsets
of a vertex set V , such that if S ∈ K and S ′ ⊂ S then S ′ ∈ K . The sets inK with cardinality
k + 1 are called the k-faces or k-simplices of K .

One can draw a geometric realisation of an abstract simplicial complex in some space,

for example in a Euclidean space of appropriate dimension as follows. The vertices are rep-

resented (drawn) by points, the edges by line segments between the corresponding points

etc. In general, a simplex is represented by the convex hull of the points that represent the

vertices of the simplex, and these points are in general position. In a geometric realisa-

tion of a complex, we require that the drawings of any two simplices intersect only at the

drawing of the simplex that is their intersection.

Example 2.6.2. An example of a simplicial complex’s geometric realisation can be seen in
Figure 2.4. Its vertices (or 0-faces) are labelled by capital letters. The edges (1-faces) are sym-
bolised by segments between pairs of vertices. There are two triangles (2-faces) in the complex
symbolised by the areas of grey colour: ABC and DEF .

Triangle BEC could be added easily to the complex. But for adding triangle DFG one
has to add edge FG too in order to maintain downward closedness.

We denote the set of k-faces of a complex K by Fk(K) = {S ∈ K, |S| = k + 1} and

its size by dk(K) = |Fk(K)|. When it is clear from the context which simplicial complex is

being considered, we will write only Fk and dk. The dimension of K is the largest integer

k such that K contains at least one k-face, that is, dim(K) = max{k : dk > 0}. The
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Figure 2.4 – A small example of a simplicial complex, see Example 2.6.2.

k-skeleton of K is the simplicial complex we get from K by deleting all its simplices of

dimension larger than k. Notice that the 1-skeleton of a simplicial complex is a (simple)

graph.

A clique complex is a special case of a simplicial complex and is defined by some under-

lying graph G. The sets in the clique complex associated to G are exactly the cliques of G.
This implies, for instance, that a size-(k + 1) subset S ⊆ V is in the complex if (and only

if) all the size-k subsets of S are in the complex. For example, the simplicial complex of

Figure 2.4 is not a clique complex because all the edges are present between vertices B, E
and C but the triangle BEC is not included.

A Vietoris-Rips complex or flag complex is a special case of a clique complex. Here the

vertex set corresponds to points (vectors) in a metric space, and two vertices are connected

by an edge if their distance is less than a scaling parameter ϵ. Vietoris-Rips complexes

are useful for applications because it can be a straightforward way of obtaining a clique

complex from a data set with the data points corresponding to the vertices.

2.6.1 Orientation

Each simplex of the complex is assigned one out of two possible orientations that cor-
responds to the ordering of its vertices up to an even permutation. That is, if one can get

one ordering from another by swapping pairs of elements an even number of times, then

the two orderings correspond to the same orientation. For example, in a triangle ABC ,
the two possible orientations are {ABC,BCA,CAB} and {ACB,CBA,BAC}. We say

that ABC,BCA,CAB,ACB,CBA,BAC all correspond to the same simplex, the first

3 of them with one orientation, and the rest with the opposite orientation. The two ori-

entations are often described by the sign of the permutation, for example sgn(ABC) =
sgn(BCA) = −sgn(ACB). This example is depicted on Figure 2.5, but in higher dimen-

sions it is more difficult to have a similar figure because cyclic-permutation invariance is

lost.

A C

B

CA

B

Figure 2.5 – The two orientations of a triangle and the induced orientations of the edges.

From now on, we take the vertex set V = [n] (in the examples V = {A,B,C}) and
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the positive orientations are the ones corresponding to the increasing order of the ver-

tices in each simplex. This way, we associate to each simplex a basis element (vector)

|S⟩ := |v0 . . . vk⟩, where v0 < v1 < · · · < vk. If the orientation of our simplex is the

opposite of the one corresponding to this ordering, then the associated element is − |S⟩.
Thus multiplication by −1 just flips the orientation.

The orientation of a simplex induces an orientation of all the smaller simplices it con-

tains. In particular, having a k-simplex with associated element |v0 . . . vk⟩, the induced

orientation of its (k − 1)-faces that we obtain by omitting a vertex with even index stays

positive, and the others get a negative sign (using zero-based indexing). We can see an

example of this in Figure 2.5: on the left drawing, simplex ABC with positive orientation

induces orientations BC , −AC = CA and AB of the edges.

2.6.2 Chain groups and boundaries

A free module is a generalisation of a vector space, where the coefficients (scalars) can

come from a ring instead of a field. In particular, a free module on basisB, over ringR is the

formal linear combinations of the elements of B with coefficients from R, i.e. {
∑

b∈B αbb}
where αb ∈ R. The rank of a free module is the size of its basis. A free Abelian group is a

free module over the ring of integers R = Z.
The k-chain is a free module that consists of all possible linear combinations of the k-

simplices of our complex. More formally, for simplicial complex K and k ≥ 0, the k-chain
CK
k of K over a commutative ring R is defined as the formal linear combination of the

k-faces of K , that is, CK
k = {

∑dk
i=1 αi |Si⟩} where Si ∈ Fk(K) and αi ∈ R. We will often

write Ck instead of C
K
k when the complex does not need to be made explicit. If R = Z then

Ck is a free Abelian group, and if R is a field then it is a vector space.

UsuallyR is taken to be the set of integers Z or a field likeQ,R orC. In the special case

when R = F2, the coefficients are either 0 or 1, and thus we have unoriented faces.

For simplicial complex K and each k > 0 integer, the k-th boundary operator ∂Kk is

a homomorphism that maps a k-face vector of K to the signed sum of the vectors of the

(k − 1)-faces that “surround” the k-face in K . It is defined formally as follows.

Definition 2.6.3 (Boundary operator). LetK be a simplicial complex and k ≥ 1 an integer.
The k-th boundary operator ofK is a homomorphism ∂Kk : CK

k → CK
k−1. For S ∈ Fk(K) and

|S⟩ = |v0, v2, . . . , vk⟩ it is defined by ∂Kk (|S⟩) =
∑k

i=0(−1)i−1 |S \ {vi}⟩, and it extends to
CK
k by linearity.

We will usually omit the complex from the notation and only write ∂k.

A C

B

CA

B

7−→
∂2

Figure 2.6 – The boundary of a triangle, see Example 2.6.4.
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Example 2.6.4. Let us use the definition of the boundary operator to show that Figure 2.6 is
a correct depiction of it. If the vector associated to our triangle is |ABC⟩. Then

∂2(|ABC⟩) = (−1)0 |BC⟩+ (−1)1 |AC⟩+ (−1)0 |AB⟩ .

Since the negative signmeans changing the orientation, we get |BC⟩+|CA⟩+|AB⟩, matching
Figure 2.6.

We can also see that

∂1(∂2(|ABC⟩)) = ∂1(|BC⟩+ |CA⟩+ |AB⟩) = (|C⟩−|B⟩)+(|A⟩−|C⟩)+(|B⟩−|A⟩) = 0.

2.6.3 Homology groups and Betti numbers

In the example, we saw that the boundary of the boundary was zero. This is also true

in general, meaning ∂k ◦ ∂k+1 = 0 for any simplicial complex. This means that im(∂k+1) ⊆
ker(∂k) which implies that the quotient module ker(∂k)/ im(∂k+1) is well-defined, and it is
usually called the k-th homology group of the simplicial complex. Now we can define the

Betti numbers, that are at the centre of interest in Chapter 3.

Definition 2.6.5 (Betti number). Let k ≥ 0 integer. The k-th Betti number βKk of a simplicial
complex K is the rank of the k-th homology group:

βKk = rk(ker(∂Kk )/ im(∂Kk+1)).

Again, we will usually write βk.

The elements of the k-th homology group are equivalence classes, and we define a k-
dimensional hole as a member of an equivalence class of the k-th homology group. More

intuitively, a hole is an element |H⟩ of the k-chain Ck that has no boundary (i.e. its bound-
ary is 0) and is no boundary. Equivalently, the following two constraints hold for a hole.

— It is a cycle, formally ∂k(|H⟩) = 0, meaning |H⟩ ∈ ker(∂k);

— there exists no |H ′⟩ ∈ Ck+1 such that ∂k+1(|H ′⟩) = |H⟩, so |H⟩ /∈ im(∂k+1).

Then βk counts the number of “independent” k-dimensional holes in the complex, that is,

the number of equivalence classes of holes. We will give a combinatorial way to formalise

this notion of independence in Chapter 3, using matroids.

Let us look atwhat Betti numbersmean intuitively in low dimensions. In the special case

of k = 0, β0 counts the number of connected components in the complex. The first Betti

number β1 counts those cycles made of edges, that are not filled by triangles. The second

Betti number counts those cavities made of triangles, that are not filled by tetrahedra.

Example 2.6.6. We continue the previous example to conclude that in a simplicial complex
over 3 vertices A,B,C , expression |H⟩ = (|BC⟩ + |CA⟩ + |AB⟩) is a 1-dimensional hole if
and only if triangle |ABC⟩ is not in the complex. Indeed, we saw that |H⟩ ∈ ker(∂1), and
also that |H⟩ ∈ im(∂2) if |ABC⟩ is in the complex. Since in a complex with 3 vertices there
cannot be another triangle, we are done.
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Torsion in the homology group

The homology groups and Betti numbers depend on the choice of the coefficient ring

R. In particular, according to the universal coefficient theorem, one can determine the

homology groups under different choices of R from the homology group with R = Z, that
can be written a direct sum of two parts, called the free part and the torsion part. For

simplifying calculations, R is usually taken as a field, and next we focus on this case.

When the coefficient ring is a field When the coefficients are taken from a field of finite

characteristic, for exampleR = F2, then the torsion part in the homology groupmay still be

nonzero, but in some cases, it can become zero. In the case where the coefficients are taken

from a field of characteristic 0 (e.g. R = R), then the torsion part of the homology group

is zero, and the free part embeds into a vector space. Thus, in this case, in the definition of

the Betti numbers we can write dimension instead of rank. In fact, Betti numbers are often

defined this way, as the dimension of the free part of the homology group [New18, Hat02].

In this thesis we use Definition 2.6.5 that does not constrain the choice of the coefficient

ring, and thus it depends on this choice.

When there is a Euclidean geometric realisation In most applications, the simplicial

complex can be “drawn” onto a low dimensional Euclidean space. As a reminder, a complex

has a geometric realisation in a space if it is possible to “draw it nicely” in that space; and

the k-skeleton of a simplicial complexK is the subcomplex of all the at-most-k-dimensional

simplices ofK . One can show that for a given k ≥ 0, if the (k+1)-skeleton of the complex

has a geometric realisation in the (k+1)-dimensional Euclidean space Rk+1
, then the k-th

homology group over Z has zero torsion, and thus the k-th Betti number is the same under

different choices of R [Jon].

Combinatorial Laplacian

For a simplicial complex K and an integer k ≥ 0, the k-th combinatorial Laplacian
∆K
k : CK

k → CK
k , usually written as ∆k, is defined as

∆k = ∆↓
k +∆↑

k,

with ∆↓
k = ∂∗k ◦ ∂k and ∆↑

k = ∂k+1 ◦ ∂∗k+1.

Here ∂∗k is the adjoint boundary operator (also called the coboundary operator) that, written
as a matrix in the standard basis, is just the transpose of the usual boundary operator. For

example, as the boundary operator maps a triangle to the edges that surround it, the adjoint

of the boundary operator maps an edge to the triangles of which it is an edge.

This way, the combinatorial Laplacian can be seen as a generalisation of the usual graph

Laplacian. The graph Laplacian is ∆0 = ∆↑
0 (since we cannot go to dimension −1, ∆↓

0 =
0): intuitively it maps a vertex to those vertices with which it shares an edge. In higher

dimensions there are two options, for example we can map an edge to another if they share

a common endpoint (∆↓
1), or if they are edges of the same triangle (∆↑

1).

∆k is a symmetric, positive semidefinitematrix of size dk×dk. Therefore, its eigenvalues
are all nonnegative, the smallest one is 0, and the smallest nonzero eigenvalue λ2(∆k) is
called the spectral gap of the Laplacian. The largest eigenvalue is denoted by λmax(∆k), and
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we call matrix ∆k/λmax(∆k) the k-th normalised Laplacian. The normalised Laplacian has

eigenvalues between 0 and 1 and its smallest nonzero eigenvalue is γ = λ2/λmax, called

the normalised spectral gap of the Laplacian.

Based on Hodge theory [Hod41], we can get an equivalent definition of the Betti num-

bers using the combinatorial Laplacian:

Observation 2.6.7. The k-th Betti number over fields of characteristic 0 (i.e. in the torsion-free
case) βk = dimker(∆k), thus it is equal to the number of zero eigenvalues of ∆k.

2.6.4 Persistent Betti numbers and Laplacians

In particular, the so-called persistent Betti numbers have been useful for applications

[PEv
+
16, KMH

+
21, BAD21], they were introduced in [ELZ02]. Here, usually the Vietoris-

Rips complexes of a data set is considered at varying scaling parameters ϵ. Starting with

ϵ = 0, where all the vertices are isolated, ϵ is slowly increased which makes some vertices

connected, and holes start to be formed. In the end, ϵ is so large that the graph becomes a

clique, when all the holes are “filled”. During this process, the persistent holes, those that

remain holes for several values of ϵ, are considered to be more important, because they do

not depend on the choice of ϵ too much: they capture a scale-independent global property

of the data set.

Figure 2.7 – Filtration: Vietoris-Rips complexes at different ϵ values. Source: [Rie17].

Now let us define persistent Betti numbers more formally. A filtration is a sequence of

simplicial complexes over the same vertex set where each complex contains the previous

ones: K1 ⊆ K2 ⊆ · · · ⊆ Kt. For example, taking Vietoris-Rips complexes of a data set for

several values of increasing scaling parameters ϵ defines a filtration.
Let us take any two simplicial complexesK,L over the same vertex set such thatK ⊆ L

– for exampleK is the Vietoris-Rips complex of a data set at scaling parameter ϵ1 and L is

the one at ϵ2 > ϵ1. The k-th persistent Betti number corresponding to pair (K,L) is defined
as

βK,Lk = rk(ker(∂Kk )/(im(∂Lk+1) ∩ ker(∂Kk ))).

Alternatively, in the above definition (im(∂Lk+1)∩ker(∂Kk )) can be replaced by im(∂K,Lk+1),

where ∂K,Lk+1 is the persistent boundary operator, that is like the usual boundary operator ∂
L
k+1

in L, but its image is restricted to the k-chain group CK
k of K . This intuitively means that

the “persistent boundary” of a (k + 1)-face in L is a combination of k-faces in K . This

makes sure that only those holes are counted that are holes both in K and L.
Persistent Laplacians can be defined analogously: ∆K,L

k = (∂Kk )
∗∂Kk + ∂K,Lk+1(∂

K,L
k+1)

∗
. It

was shown in [MWW22] that βK,Lk = dimker(∆K,L
k ).
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Chapter 3

Classical algorithms for Betti number

estimation

3.1 Introduction

In this chapter, we use simplicial complexes to model data sets. As we mentioned in the

previous chapters, Betti numbers are important features of simplicial complexes: intuitively

they characterise the number of high dimensional holes and thus give information about

the topology of the complex.

Unfortunately, computing Betti numbers efficiently seems like a challenging task, where

by an efficient algorithm, we mean one with time complexity polynomial in the number of

vertices n. Indeed, it was recently shown in [CK24] that multiplicatively approximating the

Betti numbers of a simplicial complex is hard for quantum computers, even in the special

case of clique complexes. In particular, without going into precise definitions of the com-

plexity class, multiplicative approximation of Betti numbers is QMA1-hard, where QMA1

is the 1-sided error version of QMA, and QMA is the quantum analogue of NP.

3.1.1 Additive approximation of Betti numbers

The next natural question is whether we can additively approximate the Betti numbers.

More formally, given a parameter ε ∈ (0, 1), can we efficiently output an estimate ν̃k of the
k-th (normalised) Betti number of the complex satisfying

ν̃k =
βk
dk

± ε,

where dk denotes the number of k-faces in the complex. To the best of our knowledge,

Elek was the first to study this question. In [Ele10], it was proved that if the complex has

constant degree, that is, every 0-face (vertex) of the complex is contained in a constant

number of 1-faces (edges), then there is an algorithm whose running time depends only on

the parameter ε. The constant degree assumption, however, implies that the complex has

constant dimension as well (that is, it contains no k-faces for k ∈ ω(1)), and thus all Betti

numbers βk for non-constant k are zero.

The problem was later reconsidered by Lloyd, Garnerone, and Zanardi [LGZ16], who

proposed a quantum algorithm for estimating the Betti numbers. Their algorithm combines
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quantum techniques such as Hamiltonian simulation and quantum phase estimation. As-

suming that we can efficiently sample a uniformly random k-face from the complex, the

algorithm outputs an ε-additive approximation of βk in time

poly(n, 1/γ, 1/ε),

where n = d0 denotes the number of 0-faces in the complex, and γ is the normalised

spectral gap of the k-th combinatorial Laplacian.

As current classical algorithms for calculating Betti numbers seem to run in

time poly(dk) [Fri98], which can be poly(nk), this suggests an exponential

speedup (in k) of quantum algorithms over classical ones for this problem. This

explains the surge of interest in the quantum algorithm, and in particular, in its

application to clique complexes, which have a concise poly(n)-size description

[AUC
+
24, CK24, MGB22, BSG

+
24, SL23, AMS24, Hay22].

Our results: Section 3.3 is based on our results published in [AGSS23], where we de-

scribe a simple classical algorithm for approximating Betti numbers using the path integral

Monte Carlo method. Our algorithm provides a natural benchmark for the aforementioned

quantum algorithms. Similarly to these quantum algorithms, our algorithm runs in polyno-

mial time if the gap and the precision are “large”. However, while the quantum algorithms

can afford a gap γ and precision ε as small as 1/ poly(n), our algorithm requires these to be

constant for general complexes. This is similar to the dequantization results from [GLG22].

In the case of clique complexes, we can go further. For example, if k ∈ Ω(n) then we

can afford precision ε = 1/ poly(n) if the gap is constant, or gap γ = Ω(1/ log2 n) if the
precision is constant. Overall, our result does not exclude a potential exponential quantum

advantage for the problem of estimating Betti numbers, but it narrows down the region

where it is possible. Below we give a more detailed overview of these results.

Technical overview

Using Hodge theory, we know that the k-th Betti number is the dimension of the kernel

of the k-th combinatorial Laplacian ∆k. Let us define matrix H = I − ∆k/λ̂ where λ̂ is

an estimate of the maximum eigenvalue of ∆k. We can relate the trace of a large enough

power ofH to the k-th Betti number: tr(Hr) is between βk and βk+ εdk if r ≥ λ̂
λ2

log(1/ε)
where dk is the number of k-faces in the complex and λ2 is a lower bound on the spectral

gap of ∆k.

Now to estimate the k-th normalised Betti number βk/dk, it suffices to estimate the

normalised trace of this large enough power of H : tr(Hr)/dk = 1
dk

∑dk
i=1 ⟨i|Hr |i⟩. This

expression is the expected value of a random variable Yr defined by the following process.

Take a k-face uniformly at random and take r steps on the Markov chain with transition

probabilities corresponding to the elements of H . That is, the rows and columns of H
correspond to the k-simplices of the complex, and if we are on the i-th simplex, the next

one is going to be the j-th simplex with probability |Hi,j|/∥H., i∥1. The value of Yr is an
appropriate nonzero value (depending on the path taken) if at the end of this process we

are back at the initial k-face, and 0 otherwise.

We show that it is possible to sample from Yr in time r ·poly(n) by taking r steps on the
Markov chain defined above, using the sparsity ofH . Using a standard concentration bound
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(Hoeffding’s inequality), we can upper bound how many samples we need to take from Yr
to have a good approximation of its expectation with high probability. The complexity it

yields depends on the 1-norm of H that we can upper bound using the sparsity of ∆k: we

get complexity nO(
1
γ
log 1

ε).

We can improve the complexity with the following trick. Using Chebyshev polyno-

mials, any monomial of degree r can be approximated by a polynomial of degree roughly√
r. This way, instead of directly approximating the normalised trace of Hr

, we can ap-

proximate Hr
with a polynomial of lower degree and do the previously explained process

for each monomial of the polynomial. By calculating the combination of these estimates

with the polynomial’s coefficients, we obtain our desired approximation. This improves the

complexity to n
O
(

1√
γ
log 1

ε

)
.

The previous results work for general simplicial complexes. For the special case of clique

complexes, we get an improved complexity by noticing that the combinatorial Laplacian

of clique complexes is even sparser than in the general case: instead of O(nk) nonzero
elements, there are O(n) many. This results in a better bound when using Hoeffding’s

inequality. In particular, we obtain complexity (n/λ̂)
O
(

1√
γ
log 1

ε

)
· poly(n).

Since λ̂ is approximately the maximum eigenvalue of ∆k, which is known to be lower

bounded by k, in the high dimensional case, when k ∈ Ω(n) (which is the interesting case

for the quantum algorithm of [LGZ16]), we get a polynomial runtime if
1√
γ
log 1

ε
∈ O(log n).

Open problems A natural question is to what extent we can improve our results. The

most stringent barrier seems to come from [CC24, Theorem 6], who proved that Betti

number estimation for general (not necessarily simplicial) complexes is DQC1-hard when

ε, γ = 1/ poly(n), where DQC1 is a complexity class that is expected to be hard to simulate

classically. (In fact, they consider a slight generalization of the problem called “quasi-Betti

number estimation”.) This safeguards a quantum speedup for the case of general complexes,

yet it leaves open the case of clique complexes. Our work shows that we can get additional

leverage for clique complexes. We leave it as our main open question whether the classical

complexity for clique complexes can be improved to poly(n, 1/γ, 1/ε).

The task of estimating persistent Betti numbers has been getting an increasing amount

of attention, see e.g. [WNW20, MWW22, Hay22]. It seems like our method can be used

for solving this problem too (if we have membership query access to both complexes K
and L with K ⊆ L), but we leave the formal proof of this for future work. Moreover, the

speedup in the clique complex case is kept because the persistent Laplacian can only get

even sparser compared to the usual combinatorial Laplacians. In particular, Lemma 3.3.11

still holds, but with the up-degree in L that can only be larger than in K .

A final open question, as was already mentioned in earlier works [BSG
+
24], is charac-

terizing which complexes admit a large spectral gap. The advantage of our algorithm, as

well as the aforementioned quantum algorithms, hinges on this assumption. As we men-

tioned earlier, [BSG
+
24] discussed the complete k-partite graph K(m, k) as an example

where our spectral gap assumption on the combinatorial Laplacian holds: see our state-

ment in Proposition 3.2.5. Observe that for K(n/k, k), the spectral gap is n/k, and the

normalised spectral gap is γ = 1/k. Thus, for this kind of complexes our algorithm runs in

polynomial time if for example ε ∈ Ω(1) and k ∈ O
(
log2(n)

)
.
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Related work. Upon completion of this work, we noticed that a similar classical path

integral Monte Carlo algorithm for estimating Betti numbers was proposed in [BSG
+
24].

The authors use a Trotterisation approach to implement an imaginary time evolution of the

combinatorial Laplacian, and use a more complex distribution over paths to minimise the

variance of the Monte Carlo estimator. These techniques seem more flexible than ours and

might eventually lead to a better algorithm. However, unless some additional conditions

are imposed, the current runtime of their algorithm still shows an exponential dependency

on both k and 1/ε, which our algorithm avoids.

As a reviewer has pointed out, a similar usage of the path integral Monte Carlo method

to estimate elements of a matrix power is present in [DSTS17] (in particular, see their

Lemma 2.5).

Since its publication, several articles have used our results, let us mention two of these.

In [ABC
+
24] the authors implement and compare our algorithms’ performance to some

other work, highlighting their similar Monte Carlo structure. Moreover, they slightly im-

prove the estimation our algorithm provides, by using a different polynomial for approxi-

mating the matrix power. They also provide a new quantum algorithm by combining our

classical method with the quantum algorithm of [AUC
+
24].

The work of [CWS
+
25] investigates the possibility of a superpolynomial quantum

speedup for computing matrix functions. They use some of our results in order to see

what is “easy” for classical algorithms.

3.1.2 Property testing Betti numbers

Our work presented in Section 3.4 investigates this question from a new, property test-

ing perspective in the dense graph model, and it yields a tool to investigate whether typical

graphs can have a (very) large Betti number. This is relevant for some of the previously

mentioned algorithms, since an additive estimate of a normalised Betti number is only in-

teresting if the Betti number is large.

The result of Elek [Ele10] in the bounded-degree model can also be viewed from a prop-

erty testing perspective. In their model, the graph is assumed to have a constant bound d on
the vertex degrees, and a query reveals the (at most d) neighbours of a vertex. Elek showed
that, for any ε > 0 and with a number of queries only dependent on ε, it is possible to re-

turn an estimate β̂k satisfying β̂k = βk ± εn for k < d (for k ≥ d necessarily dk = βk = 0).
The proof is based on (sparse) graph limits and is completely different from our approach.

Unfortunately, such a result is not possible in the dense graph model: returning an

estimate β̂k = βk ± εn (or even β̂k = βk ± εdk) requires Ω(n) many queries. To see

this, consider the case k = 0 for which d0 = n and β0 equals the number of connected

components of the graph. The cycle graph has β0 = 1, while any graph with ≤ n/2 edges
has β0 ≥ n/2. However, it takes Ω(n) queries to distinguish these graphs in the dense

model. This motivates the weaker formulation of large Betti number testability that we use

in Section 3.4. Note also that the contrapositive, having a small Betti number, is trivial to

test. E.g., a graph cannot be far from having small Betti number β0 since we can always

add a cycle, thereby setting β0 = 1.

Our results: In Section 3.4, based on our article [SA25], we use the lens of (graph) prop-

erty testing to further our understanding of Betti number estimation. In particular, we are
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given query access to the adjacency matrix of a dense graphG and we want to test if the k-
th Betti number βk of the clique complex associated toG satisfies βk ≥ (1− δ)dk. We show

that this property (over F2) for constant k is testable with a constant number of queries in

the dense graph model if δ is very small. More specifically, we prove that for any ε > 0,
there exists δ(ε, k) > 0 such that testing whether βk ≥ (1− δ)dk for δ ≤ δ(ε, k) reduces to
tolerantly testing (k+2)-clique-freeness, which is known to be testable. For this, we use a

combinatorial understanding of simplicial complexes.

Technical overview

For proving the above result, first we observe that there is a notion of independence

of k-simplices that is useful in the context of this work. This notion comes from matroid

theory: we can assign a vector to each simplex based on its boundary, and a set of k-
simplices is independent iff the corresponding vectors form a linearly independent set. On

an intuitive level, this means that a set of k-faces is independent if no subset of them forms

a k-dimensional hole. We denote the maximum size of an independent set of k-faces in the

complex as rk.

We show that rk cannot be much smaller than the total number of k-faces dk, in par-

ticular, dk(k + 1)/n ≤ rk. Then we present two proofs
1
of an elegant formula, which

links the k-th Betti number to the total number of k-faces and to the maximum number of

independent k- and (k − 1)-faces: βk = dk − rk − rk−1.

Then we turn to proving our main result, first in the special case of k = 0. Using

the previous formula, β0 ≥ (1 − δ)d0 (with the number of vertices d0 = n) is equivalent
to r1 ≤ δn, i.e. it suffices to test if G has few independent edges. Then we use the fact

that r1 can be at most about a factor-n smaller than d1, which leads to the conclusion that

β0 ≥ (1−δ)d0 impliesG to have few edges, and thus to be close to edge-freeness. Moreover,

one can check that being far from β0 ≥ (1 − δ)d0 implies being far from edge-freeness.

Hence, for appropriate parameters ε, δ we reduced the problem of property testing very

large β0 to tolerantly testing edge freeness.

In general, for constant k we can reduce testing βk ≥ (1−δ)dk to tolerantly testing (k+
2)-clique-freeness, and the first part of the reduction is very similar to the k = 0 case. But
for the “farness” part of the reduction, we need a slightly more complicated argument. By

contraposition, we assume that there is a graph that is ε-far from having a very large βk, but
it is ε/2-close to (k+1)-clique-freeness. To reach contradiction, we use a construction that,
given a graph H with few (k + 1)-cliques and a proximity parameter α, provides another
graph H ′

that is α-close to H and whose clique complex has a large βk. The construction
takes αn vertices of H and modifies the subgraph induced by this set to change it into a

complete (k + 1)-partite graph.

Moreover, in the reduction we need to use the fact that containing few (k + 2)-cliques
implies being close to (k + 2)-clique-freeness, which is true by the well-known graph re-

moval lemma. However, using the graph removal lemma requires our parameter δ to be

very small, upper bounded by one over a tower function of log(1/ε) (this best known bound
is due to [Fox11]). For the special cases of k = 0 and k = 1 we can use simple observations

to avoid using the graph removal lemma and get much better bounds on δ.

1. Let us note that first we gave a combinatorial proof of this result, then we discovered that a very

different, algebraic proof had already existed in the literature.
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Unoriented faces We defined the k-chain group as the free module Ck = {
∑dk

i=1 αiSi}
where R is a commutative ring, Si ∈ Fk(K) and αi ∈ R. As we discussed before, many

sources consider integer or real coefficients (R = Z or R = R), but for our combinatorial

interpretation of homology, it is more natural to pick binary coefficientsR = F2. Homology

overF2 is based on unoriented faces inwhich case the chain groupCk = 2Fk
is simply the set

of all subsets of Fk. We note that this way, the homology groups can have torsion, and thus

the Betti numbers can change compared to the torsion-free case, but in most applications,

this does not happen (see the discussion about torsion in Section 2.6.3). With this choice of

binary coefficients, we will refer to the elements of Ck either as a sum of k-faces or as a set
of k-faces – the two are equivalent.

Openquestions. Ourwork raises a few open questions. Themost obvious one iswhether

our results can be pushed further. For instance, it might be possible to test more moder-

ately sized Betti numbers, or Betti numbers for non-constant k (the case of interest for

quantum algorithms). Having similar results under different coefficient rings R is another

perspective.

A final open direction is to introduce the framework of property testing abstract sim-

plicial complexes, generalising graph property testing. By limiting ourselves to clique com-

plexes, we could phrase our results in the graph property testing language, but this might

not be the most natural approach.

3.2 Notations and preliminaries

3.2.1 Combinatorial Laplacians

Let us keep inmind the definitions of simplicial complexes and combinatorial Laplacians

from Section 2.6. We define the degree and the neighbourhood of a face as follows.

Definition 3.2.1. In a simplicial complex, the up-degree of a k-faceS is the number of (k+1)-
faces that contain S. It is denoted as dupS := |{S ′ ∈ Fk+1 s.t. S ⊆ S ′}|. The maximum
up-degree among all the k-faces is denoted as δk = maxS∈Fk

d
up
S .

Definition 3.2.2 (Down-up and up-down neighbours). Let S1, S2 ∈ Fk be two k-faces of
a simplicial complex K . S1 and S2 are said to be down-up neighbours if their symmetric
difference |S1△S2| = 2. Additionally, if S1 ∪ S2 is a (k + 1)-face of K , then S1 and S2 are
also said to be up-down neighbours.

The following lemma from [Gol02] uses these notions to characterise the entries of∆k.

Lemma 3.2.3 (Restatement of Laplacian Matrix Theorem, [Gol02, Theorem 3.3.4]). Let
K be a finite oriented simplicial complex, k be an integer with 0 < k ≤ dim(K), and
{S1, S2, . . . , Sdk} = Fk(K) denote the k-faces of K . Let i, j ∈ [dk]. Then we have the
following:

— (∆k)ii = d
up
Si
+ k + 1.

— (∆k)ij = ±1 if i ̸= j, and Si and Sj are down-up neighbours but they are not up-down
neighbours.
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— (∆k)ij = 0 otherwise (i.e. if i ̸= j, and either Si and Sj are up-down neighbours or they
are not down-up neighbours).

The following lemma gathers some useful facts about ∆k that will be used in our proofs.

Lemma 3.2.4. Let us consider a simplicial complex K with ∆k being its k-th combinatorial
Laplacian and δk being the maximum up-degree among all k-faces of K . Then the following
results hold:

— δk + k + 1 ≤ λmax(∆k) ≤ n.
— (∆k)ii ≤ n.
— ∆k has at most (n − k − 1)(k + 1) nonzero off-diagonal entries in each row, all equal

to ±1 2.

Proof. The second and third bullets follow from Lemma 3.2.3. The second inequality of

the first bullet follows from [DR02, Proposition 6.2], who prove that

λmax(∆
↑
k) ≤ n and λmax(∆

↓
k) ≤ n. This gives the claimed bound if we use that

λmax(∆k) = max{λmax(∆
↑
k), λmax(∆

↓
k)}, which follows from ∆↑

k∆
↓
k = ∆↓

k∆
↑
k = 0 (which

is true because ∂k(∂k+1(.)) = 0).
For proving the first inequality of the first bullet, we write the largest eigenvalue using

the Rayleigh quotient:

λmax(∆k) = max
∥x∥2=1

xT∆kx = max
∥x∥2=1

(xT∆↑
kx+ xT∆↓

kx)

= max
∥x∥2=1

(∥∂∗k+1x∥22 + ∥∂kx∥22).

We can lower bound this by taking a particular x: the one that is all zero except for

a position where it is one, and the latter position corresponds to a k-face with up-degree

δk. For this vector, ∂
∗
k+1x contains δk ones and the other elements are zero (because it has

up-degree δk). And it is also true that ∂kx contains k + 1 ones and the other elements

are zero (because every k-face contains k + 1 many (k − 1)-faces). This concludes that
δk + k + 1 ≤ λmax(∆k).

A clique complex with large Betti number and spectral gap

Some algorithms that estimate the k-th Betti number, including our algorithm presented

in Section 3.3, require the spectral gap of the combinatorial Laplacian not to be too small,

or even the Betti number to be large. In [BSG
+
24, Section IV A] the authors describe a

construction of a clique complex and prove that it satisfies both requirements. As it is

relevant for us in this chapter, let us look at this result briefly.

For the (k− 1)-st Betti number, the underlying graph of the clique complex is the com-

plete k-partite graph K(m, k), where the total number of vertices is n = mk. K(m, k)
consists of k clusters, where each cluster containsm vertices, and two vertices are adjacent

iff they are in different clusters. The (k − 1)-st combinatorial Laplacian of the clique com-

plex defined byK(m, k), has spectral gapm and the (k−1)-st Betti number of the complex

is (m− 1)k (see [BSG+
24, Proposition 1 & 2]). This implies the following proposition.

2. This is tight up to a constant for general simplicial complexes, in contrast to some earlier papers

[GCD22, MGB22] that mention O(n) nonzero off-diagonal entries. Later in the chapter (see Lemma 3.3.11),

we show that for clique complexes it is actuallyO(n), and we exploit this to obtain a more efficient algorithm.
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Proposition 3.2.5. Let k < n be positive integers, such that n is an integer multiple of k.
Then there is a clique complex on n vertices that has (k− 1)-st Betti number (n/k− 1)k, and
whose (k − 1)-st combinatorial Laplacian has spectral gap n/k.

3.2.2 Property testing subgraph freeness

The following well-known lemma (that can be proved using the Szemerédi regularity

lemma [Sze78]) has been central to proving many testability results, and we will also use it

in Section 3.4.

Lemma 3.2.6 (Graph removal lemma, [Für95]). For any fixed graphH and any ε > 0, there
exists a δ > 0 such that the following holds: any n-vertex graphG (|V (H)| < n) that contains
at most δn|V (H)| copies ofH as subgraphs, can be madeH-free by removing at most εn2 edges
(i.e. G is ε-close to being H-free).

It follows almost directly from this result that, for any constant-sized graphH , the prop-

erty of being H-free is testable, i.e. the query complexity of this property testing problem

does not depend on n [ADL
+
94]. We note that the bound on δ in this result is extremely

small, even using the improved bound of [Fox11]: δ = 1/tower(5|V (H)|4 log(1/ε)), where
tower(1) = 2 and for all i ≥ 1, tower(i+ 1) = 2tower(i).

This can be combined with the fact that every testable property in the dense graph

model is also tolerantly testable. More precisely, in [FN07] the authors prove that for every

testable property there is a distance approximation algorithm, and this implies tolerant

testability. This way, we get the following lemma which we are going to use later.

Lemma 3.2.7. For any graphH , the property ofH-freeness is tolerantly testable in the dense
graph model. The number of queries depends only on the distance parameters ε1, ε2 and on
|V (H)|.

Remark 3.2.8. The construction of [FN07] takes a tester for any property and builds a tolerant
tester for the same property. The resulting query complexity is at least a tower in some function
of the (non-tolerant) tester’s query complexity. A later work [GKS23] obtained the following
improved upper bound. If a property is testable for error parameter ε with query complexity
q(ε), then it is tolerantly testable with query complexity 2poly(1/ε)·2q(ε/2) ([GKS23] Theorem 9).

3.2.3 Matroids

The appropriate notion of independence of simplices and of holes that we will need in

Section 3.4, comes frommatroid theory. A matroid is a downward closed set family with an

additional property called the exchange property. In this sense, matroids are a specialisation

of simplicial complexes, but we are going to use them in a different way.

Definition 3.2.9 (Matroid). A matroid M over ground set E is a family of subsets I ⊆ 2E

called the independent subsets of E, and which satisfies the following properties.

1. ∅ ∈ I .

2. If A ∈ I and B ⊆ A then B ∈ I .

3. If A,B ∈ I and |B| < |A| then ∃v ∈ A \B such that B ∪ {v} ∈ I .
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The easiest example of a matroid is a graph. In this case, the ground setE in the matroid

is the edge set of the graph, and we call a subset of edges independent if it is cycle-free. Ma-

troids that can be defined this way by a graph are called graphic matroids or cycle matroids.

Another important example is linear independence of vectors. The elements of E are

vectors from a vector space, and a subset of them is called independent if the vectors are

linearly independent (over a field F ). Matroids that can be defined in this way are called

linear matroids (or representable over F ).
By the boundary vector of a k-face S ∈ Fk, we mean a binary vector ∂k(S) ∈ {0, 1}dk−1

,

where a coordinate is 1 iff the corresponding (k − 1)-face appears in the boundary of S
(over F2). Note that notation ∂k was defined as the boundary operator, but sometimes we

are also going to use it to denote boundary vectors.

The simplicial matroid (or simplicial geometry)Mk(K) associated to a simplicial com-

plex K is a linear matroid defined as follows. It appears in e.g. [CR70, CL87].

Definition 3.2.10 (Simplicial matroid). The k-simplicial matroid Mk(K) associated to a
simplicial complex K is the linear matroid whose ground set is the set of boundary vectors
∂k(S) ∈ {0, 1}dk−1 for S ∈ Fk(K).

Motivated by this, we call a subset of k-faces independent if the corresponding boundary

vectors are linearly independent (over the field F2).

A maximal independent set of a matroid M is called a basis. It is well known that all

the bases of a matroid have the same size, equal to the rank rk(M) of the matroid. The full

k-simplicial matroid Mk(K
full
k ) is the k-simplicial matroid associated to the full complex

K full
k = {S ⊆ V, |S| ≤ k + 1} that contains all the k + 1-subsets as k-faces, but it does not

have any higher dimensional face.

Proposition 3.2.11 (e.g. [CL87], Proposition 6.1.5). rk(Mk(K
full
k )) =

(
n−1
k

)
.

For a construction, fix a vertex u ofK full
k and take the set of k-faces that contain u. It is

easy to see that this set of size

(
n−1
k

)
is a basis of the matroid.

3.3 Additive approximation of Betti numbers

In a nutshell, we base our algorithm on a random variable whose expectation is close

to βk/dk and whose variance is (sufficiently) small. Crucially, we show that we can effi-

ciently generate samples from this random variable. Standard concentration bounds can

be used to bound the required number of samples, and hence establish the complexity of

our algorithm. More precisely, the algorithm is based on the technique of path integral

Monte Carlo [Bar79], akin to the Ulam-von Neumann algorithm for solving linear systems

[FL50]. Our result is formally stated below. By λ2(∆k) we denote the spectral gap of the

combinatorial Laplacian ∆k, which is equal to its smallest nonzero eigenvalue.

Theorem 3.3.1. Let∆k denote the k-th combinatorial Laplacian of the complex. Assume that
in time poly(n) we can (i) draw a k-face uniformly at random, and (ii) check whether a set is
in the complex. Given an estimate λmax(∆k) ≤ λ̂ ≤ cλmax(∆k) for some constant c > 0 and
a lower bound γ such that∆k has spectral gap λ2(∆k) ≥ γλ̂, there exists a classical algorithm
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Algorithm Complexes Complexity is poly(n) if

quantum algorithm of [LGZ16] general γ, ε ∈ Ω(1/ poly(n))

this work general γ, ε ∈ Ω(1)

this work clique, k ∈ Ω(n)
γ ∈ Ω(1), ε ∈ Ω(1/ poly(n))

or γ ∈ Ω(1/ log2(n)), ε ∈ Ω(1)

Table 3.1 – Comparison of the parameter settings of quantum and classical algorithms for

the Betti number estimation problem under which their running time is polynomial.

that, for any ε > 0, outputs with high probability an estimate ν̃k = βk/dk ± ε of the k-th
(normalised) Betti number of a general simplicial complex in time

n
O
(

1√
γ
log 1

ε

)
,

and of a clique complex in time

(
n

λ̂

)O
(

1√
γ
log 1

ε

)
· poly(n).

The algorithm has space complexity poly(n, 1/γ, log(1/ε)).

For general simplicial complexes, our algorithm improves upon the aforementioned

classical algorithms if k ∈ Ω(1/
√
γ). Now let us focus on the special case of clique com-

plexes. Since n ≥ λmax(∆k) ≥ k + δk + 1 (see Lemma 3.2.4), with δk being the maximum

up-degree over all k-faces (see Definition 3.2.1), we can simply set λ̂ = n if k ∈ Ω(n)
or if we know that δk ∈ Ω(n). In such case, the algorithm for clique complexes runs in

time 2
O
(

1√
γ
log 1

ε

)
· poly(n). This is polynomial if either γ ∈ Ω(1) and ε = 1/ poly(n), or

γ ∈ Ω(1/ log2 n) and ε ∈ Ω(1). The algorithm provides a classical counterpart to the afore-

mentioned line of quantum algorithms for estimating Betti numbers which, under similar

assumptions, have a runtime scaling as poly(n, 1/γ, 1/ε). We summarize these findings in

Table 3.1.

The complexity of our algorithm for general simplicial complexes can alternatively be

obtained using the singular value transformation (SVT) algorithm by Gharibian and Le

Gall, or more precisely, the “dequantized quantum singular value transformation algorithm”

in Section 4 of [GLG22]. The main difference is that we use a path integral Monte Carlo

approach for computing matrix powers, instead of computing them explicitly as in [GLG22,

Lemma 3]. This approach provides us with an exponential improvement in the space com-

plexity since the SVT algorithm has space complexity nO( 1
γ
log 1

ε). The more significant

benefit is that we get an improved algorithm for clique complexes, which is the main case

of interest for the aforementioned quantum algorithms. We show that the k-th combinato-

rial Laplacian is n-sparse for clique complexes, as compared to general simplicial complexes

which areO(kn)-sparse. This implies that it is closer to a diagonally dominant matrix, and

we can exploit this for obtaining better time complexity when using the path integral Monte

Carlo technique.
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3.3.1 Algorithm for general simplicial complexes

Consider a general simplicial complex K with vertex set [n], dk denoting the number

of its k-faces, ∆k its k-th combinatorial Laplacian, and with k-th Betti number βk (over

a field of characteristic 0, like Q or R) . We wish to obtain an estimate ν̃k that satisfies

ν̃k = βk/dk ± ε for some parameter ε ∈ (0, 1). In this section, we make the following

assumptions:

1. In time polynomial in n, (a) we can check whether a set is in the complex, and (b) we

can sample a k-face from the simplicial complex K uniformly at random
3
.

2. We have estimates λ̂ and γ on the largest eigenvalue and the spectral gap of ∆k,

respectively, satisfying

λmax(∆k) ≤ λ̂ ≤ cλmax(∆k) and λ2(∆k) ≥ γλ̂,

for some constant c > 0. If we do not have such a bound on the spectral gap, an

alternative is to approximate the “quasi-Betti number”, which is the number of small

eigenvalues (below γλ̂) of the combinatorial Laplacian, as in [CC24].

Note that instead of the first assumption we could say that we have query (and sampling)

access to the complex where we can ask for any subset of the vertex set whether they are in

the complex. This way learning the whole complex would take an exponential number of

queries (in n), so it is interesting to have subexponential query complexity. In the following

we continue to focus on time, because efficient time complexity is a stronger result than

query complexity.

We could introduce the normalised Laplacian∆k/λmax which has its spectrum between

0 and 1. Instead, we consider the related matrix

H = I −∆k/λ̂,

which, as we discuss below, satisfies 0 ⪯ H ⪯ I . From Lemma 3.2.4, we know that 0 ≤
(∆k)ii ≤ n and ∆k has O(nk) nonzero off-diagonal entries in every row, each of absolute

magnitude 1. This implies that

∥H∥1 = max
j

∑
i

|Hij| ∈ O(nk).

By construction, the k-th combinatorial Laplacian ∆k is positive semidefinite, hence

all eigenvalues are non-negative, βk of them are equal to 0, the second smallest distinct

eigenvalue is λ2(∆k), and the maximum eigenvalue is λmax(∆k). Thus, by linearity, the

eigenvalues of H lie between 0 and 1, βk of them equal to 1, and all other eigenvalues lie

below 1 − λ2(∆k)/λ̂ ≤ 1 − γ. The following lemma shows how to relate the trace of Hr
,

for sufficiently large r, to the Betti number βk.

Lemma 3.3.2. If r ≥ 1
γ
log 1

ε
then βk ≤ Tr (Hr) ≤ βk + εdk.

Proof. On the one hand, we have that

Tr (Hr) =

dk∑
i=1

λi(H)r ≥ βk.

3. Assumption (b) is automatically satisfied if the complex is dense in k-faces.
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On the other hand, we have that

Tr (Hr) =

dk∑
i=1

λi(H)r ≤ βk +
∑

i:λi(H)<1

(1− γ)r ≤ βk + εdk,

where we used that (1− γ)r ≤ ε for r ≥ 1
γ
log 1

ε
.

Using this observation, we can obtain a 2ε-additive estimate of βk/dk from an ε-additive
estimate ofTr (Hr) /dk. To obtain the latter we use another observation, that holds not only
for large r as above, but for a general nonnegative z-th power of H .

Usually we have e.g. i ∈ [dk] and Si ∈ Fk, that is Si is a k-face and i is its id. In the

following, for simplicity but with a slight abuse of notation, i is also going to denote the

k-face itself.

Observation 3.3.3.

1

dk
Tr (Hz) =

1

dk

dk∑
i=1

⟨i|Hz|i⟩ = E
i

[
X(i)
z

]
,

where i ∈ [dk] is sampled uniformly at random and X(i)
z = ⟨i|Hz|i⟩.

SinceH isO(nk) ∈ O(n2)-sparse, we can evaluateX
(i)
z exactly in timeO(n2z). Indeed,

this is the approach in [GLG22]. Here we use another approach based on the path integral

Monte Carlo method, which has two advantages. First, it improves the space complexity

from nO(z)
, as in [GLG22], to Õ(nz). Second, it will lead to a faster algorithm for clique

complexes (see next section).

Let us denote the sign ofHi,j by (−1)s(i,j), with s(i, j) ∈ {0, 1}. We can rewriteX
(i)
z as

follows:

X(i)
z = ⟨i|Hz|i⟩

=
∑
j1,...,jz

⟨i|jz⟩ ⟨jz|H|jz−1⟩ . . . ⟨j1|H|i⟩

=
∑
j1,...,jz

Yz(i, j1, . . . , jz)
|Hjz ,jz−1|
∥H·,jz−1∥1

. . .
|Hj1,i|
∥H·,i∥1

,

with

Yz(j0, j1, . . . , jz) = ⟨j0|jz⟩
z−1∏
ℓ=0

(−1)s(jℓ+1,jℓ)∥H·,jℓ∥1.

By Lemma 3.2.4, it holds that |Yz| ≤ ∥H∥z1 ≤ (n + nk)z ∈ O(n2z). By our choice of

normalisation, we can interpret |Hj,i|/∥H·,i∥1 =: P (i, j) as a transition probability from

face i to face j. We can then say that

X(i)
z = E

(j0=i,j1,...,jz)
[Yz(j0, j1, . . . , jz)] ,
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where the path (j0, j1, . . . , jz) is drawn with probability P (j0, j1) . . . P (jz−1, jz) from the

resulting Markov chain with transition matrix P . Moreover, if we choose the initial k-face
j0 ∈ [dk] uniformly at random, then

E [Yz] = E
(j0,j1,...,jz)

[Yz(j0, j1, . . . , jz)]

= E
j0

[
X(j0)
z

]
=

1

dk
Tr(Hz).

This gives us an unbiased estimator Yz for the normalised trace ofHz
. Moreover, as proven

in the following lemma, we can sample Yz efficiently.

Lemma 3.3.4. We can sample from Yz , as defined above, in time z · poly(n).
Proof. We can evaluate Yz by sampling z steps of the Markov chain over k-faces. The initial
k-face j0 is drawn uniformly at random. By our assumptions, we can do this in time poly(n).
Subsequent steps are sampled as follows.

Let ji be the current k-face. First, we learn the up-degree dupji , and hence (∆k)jiji . We

do this by, for all potential up-neighbours (obtained by adding one element to the face),

querying whether they are in the complex. This takes n − k − 1 queries, and hence time

poly(n). Then we learn all down-up neighbours by querying all O(n2) subsets with sym-

metric difference 2. This again takes time poly(n). By Lemma 3.2.3, we can now derive all

O(n2) nonzero entries of the ji-th row H·,ji , and hence sample ji+1 according to the prob-

ability P (ji+1, ji) = |Hji+1,ji |/∥H·,ji∥1. This yields time poly(n) per step of the Markov

chain, and so z · poly(n) time overall.

Intuitively, the algorithm does the following. Starting from a random k-face S we do a

random walk where in each step we move to a k-face S ′
that is a down-up neighbour of S

but not an up-down neighbour of it (see Lemma 3.2.3). If, after some number of steps, we

get back to the starting face S, it means that with high probability, there is a hole of k-faces.
It remains to bound the complexity of estimating E[Yz], given samples of Yz . For this,

we use Hoeffding’s inequality (Lemma 2.4.1), which yields the following lemma.

Lemma 3.3.5. For any δ > 0 and integer z ≥ 0, we can obtain a δ-additive estimate of
E[Yz] = Tr(Hz)/dk by taking the average of O(n4z)/δ2 many independent samples of Yz .

Proof. We know that |Yz| ≤ ∥H∥z1 ≤ (n + nk)z ∈ O(n2z) (Lemma 3.2.4). Consider p
independent samples Yz,1, . . . , Yz,p distributed according to Yz . For any δ > 0, Hoeffding’s
inequality (Lemma 2.4.1) states that

Pr

(∣∣∣∣∣1p
p∑
i=1

Yz,i − E[Yz]

∣∣∣∣∣ ≥ δ

)
≤ 2 exp

(
−2pδ2

O(n4z)

)
.

If we choose p = O(n4z)/δ2 then
1
p

∑
Yz,i will be δ-close to its expectation E [Yz] =

1
dk

Tr(Hz) with probability at least 1− 1/2poly(n).

This leads to Algorithm 1, which has time complexity O(n4z/δ2).
For r ≥ 1

γ
log 2

ε
, we know from Lemma 3.3.2 that Tr(Hr)/dk = βk/dk ± ε/2. Hence,

setting δ = ε/2 and z = r in the algorithm above we get an ε-additive estimate of βk/dk.

The algorithm requires p = O(n4r/δ2) = nO( 1
γ
log 1

ϵ ) samples of Yr, each of which can be

obtained in time r · poly(n) by Lemma 3.3.4. The overall time complexity of Algorithm 1 is

hence nO( 1
γ
log 1

ε).
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Algorithm 1: Algorithm for δ-estimating Tr (Hz) /dk = Tr
((
I −∆k/λ̂

)z)
/dk

Input: Query and sample access to complex K , integer k, parameters λ̂ and z,
precision parameter δ ∈ (0, 1).

Output: Estimate estk,z such that estk,z = Tr(Hz)/dk ± δ with high probability.

1 Set p = O(n4z)/δ2.
2 for t = 1, . . . , p do
3 Sample a k-face j0 of K uniformly at random.

4 Sample z steps (j0, j1, . . . , jz) of the Markov chain P with initial face j0.

5 Set Yz,t = ⟨j0|jz⟩
∏z−1

q=0(−1)s(jq+1,jq)∥H·,jq∥1.
6 Return estk,z =

1
p

∑p
t=1 Yz,t.

Improvement using Chebyshev polynomials

We can slightly improve this result by approximating Hr
with a polynomial of degree

roughly

√
r using Chebyshev polynomials, and then estimating the monomials using Al-

gorithm 1. Let Ti(x) denote the i-th Chebyshev polynomial (of the first kind). They are

defined by recurrence Ti(x) = 2xTi−1(x) − Ti−2(x), with T0(x) = 1, T1(x) = x. Cheby-
shev polynomials are useful in approximation theory, for example in the following lemma.

Lemma 3.3.6 (Follows from [SV14, Theorem 3.3]). For any δ > 0 and d ≥
√

2r log(2/δ),
the monomial xr can be approximated by a polynomial pr,d(x) of degree d such that |pr,d(x)−
xr| ≤ δ for all x ∈ [−1, 1].

Now we bound the size of the monomial coefficients in pr,d(x), as these will govern the

precision with which we need to estimate the trace of each monomial. Following [SV14,

Chapter 3], the polynomial pr,d(x) is obtained by first approximating xr in the Chebyshev

basis by

pr,d(x) = α
(r)
0 +

d∑
i=1

2α
(r)
i Ti(x)

where α
(r)
i =

(
r

(r−i)/2

)
/2r if i has the same parity as r, and α

(r)
i = 0 otherwise. We then

obtain the desired coefficients of pr,d in themonomial basis by expressing each of the Cheby-

shev polynomials in the monomial basis. Concretely, if Ti(x) =
∑i

ℓ=0 c
(i)
ℓ x

ℓ
then

pr,d(x) = α
(r)
0 +

d∑
i=1

2α
(r)
i Ti(x)

= α
(r)
0 +

d∑
ℓ=0

[
d∑
i=ℓ

2α
(r)
i c

(i)
ℓ

]
xℓ =:

d∑
ℓ=0

b
(r,d)
ℓ xℓ.

To bound the coefficients b
(r,d)
ℓ , we first bound the coefficients c

(i)
ℓ in Lemma 3.3.7 below.

Combined with the bounds

∣∣∣α(r)
i

∣∣∣ ≤ 1, this lemma yields the upper bound |bℓ| ≤ (d + 1) ·
2 · 22d ≤ 23d.

Lemma 3.3.7. For all i ∈ N and ℓ ≤ i, we have
∣∣∣c(i)ℓ ∣∣∣ ≤ 22i.
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Proof. We prove the lemma using induction on i. Remember that the Chebyshev polyno-

mials can be defined via the following recurrence

Ti(x) = 2xTi−1(x)− Ti−2(x),

with T0(x) = 1, T1(x) = x. This immediately shows that the bounds

∣∣∣c(i)ℓ ∣∣∣ ≤ 22i hold for

i = 0 and i = 1. Now assume i > 1 and that for all i′ < i and ℓ ≤ i′, we have
∣∣∣c(i′)ℓ

∣∣∣ ≤ 22i
′
.

Then from the recursion Ti(x) = 2xTi−1(x)−Ti−2(x), we obtain c
(i)
ℓ = 2c

(i−1)
ℓ−1 − c

(i−2)
ℓ and

hence

∣∣∣c(i)ℓ ∣∣∣ ≤ 22(i−1)+1 + 22(i−2) ≤ 2 · 22(i−1)+1 = 22i.

Now we can describe an efficient algorithm that, for any ε > 0, outputs an additive ε-
estimate of βk/dk with high probability. The correctness and complexity of the algorithm

are proven in Theorem 3.3.8.

Algorithm 2: Algorithm for ε-estimating βk/dk

Input: Query and sample access to complex K , integer k, estimates of λ̂ and γ,
precision parameter ε ∈ (0, 1).

Output: Estimate ν̃k such that ν̃k = βk/dk ± ε with high probability.

1 Set r =
⌈
1
γ
log 3

ε

⌉
and d =

⌈√
2
γ
log 6

ε

⌉
.

2 for ℓ = 0, . . . , d do
3 Estimate Tr

(
Hℓ
)
/dk to additive precision δ = ε/

(
3(d+ 1)23d

)
with high

probability using Algorithm 1. Let estk,ℓ denote the output.

4 Return ν̃k =
∑d

ℓ=0 b
(r,d)
ℓ estk,ℓ.

Theorem 3.3.8. Algorithm 2 returns with high probability an estimate of βk/dk with additive

error ε in time nO
(

1√
γ
log 1

ε

)
.

Proof. First, we prove the correctness. By our choice of r, we know from Lemma 3.3.2 that

Tr(Hr)/dk = βk/dk±ε/3, so it suffices to return an (2ε/3)-additive estimate ofTr(Hr)/dk.
By Lemma 3.3.6, we can use the approximation

1

dk
Tr(Hr) =

1

dk

d∑
ℓ=0

b
(r,d)
ℓ Tr

(
Hℓ
)
± ε/3

for d =
⌈√

2r log 6
ε

⌉
≤
⌈√

2
γ
log 6

ε

⌉
. We estimate each term Tr

(
Hℓ
)
/dk to precision δ =

ε
3(d+1)23d

with high probability, so that the final estimator has a total error

ν̃k =
d∑
ℓ=0

b
(r,d)
ℓ estk,ℓ =

d∑
ℓ=0

b
(r,d)
ℓ

(
Tr
(
Hℓ
)
/dk ± δ

)
=

(
1

dk

d∑
ℓ=0

b
(r,d)
ℓ Tr

(
Hℓ
))

± ε/3,
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using that

∣∣∣∑d
ℓ=0 b

(r,d)
ℓ δ

∣∣∣ ≤ δ(d + 1)23d ≤ ε/3. Combined with the previous error bounds,

this shows that ν̃k = βk/dk ± ε with high probability.

To bound the time complexity, recall that the time complexity of Algorithm 1 in Line 3

is O(n4ℓ/δ2) ∈ nO(d)/ε2. Summing over the d + 1 loops, and using the expression for d,

this yields a total time complexity that is n
O
(

1√
γ
log 1

ε

)
.

This completes the proof of the first item of Theorem 3.3.1.

3.3.2 Algorithm for clique complexes

The complexity of our path integral Monte Carlo algorithm is dominated by the sample

complexity that follows from Hoeffding’s inequality (Lemma 2.4.1), which we bound using

the fact that |Yz| ≤ ∥H∥z1 and ∥H∥1 = poly(n). Here we prove a tighter bound on ∥H∥1
for the special case of clique complexes and exploit this to improve the algorithm.

We will use the following characterisation of the off-diagonal elements of the combina-

torial Laplacian ∆k.

Lemma 3.3.9 (Follows from Lemma 3.2.3). Let ∆k denote the k-th combinatorial Laplacian
of a simplicial complex K . Then (∆k)ij for i ̸= j is nonzero if and only if the corresponding
two k-faces are down-up neighbours but not up-down neighbours.

The following claim is going to be useful for the proof of the next lemma.

Claim 3.3.10. In a clique complex, every k-face has at most n− k − 1 down-up neighbours
that are not its up-down neighbours.

Proof. Since we are in the clique complex case, a k-face is exactly a (k+1)-clique, so we will
use the two expressions interchangeably. Wewill prove a slightly stronger statement: every

vertex that is not in a (k+ 1)-clique C can appear in at most one down-up neighbour of C
that is not its up-down neighbour. For contradiction, let us suppose that there is a vertex v
among the n− k− 1 vertices that are not in C such that v belongs to two distinct down-up
neighboursC1 andC2 ofC . That is, suppose there are two distinct vertices u1, u2 ∈ C such

that C1 = C \ {u1} ∪ {v} and C2 = C \ {u2} ∪ {v} are (k + 1)-cliques. We show that

C1 and C2 are up-down neighbours of C . Indeed, v must be adjacent to every vertex of C :
from C1 ∈ K it is adjacent to all vertices in C other than the vertex u1, and from C2 ∈ K
it is adjacent all vertices except for u2. So C ∪{v} forms a (k+2)-clique and hence C1 and

C2 are up-down neighbours of C .

This section’s main observation is the following.

Lemma 3.3.11. The k-th combinatorial Laplacian of a clique complex has at most n−k−dupi
nonzero entries in every row, that is,

|{j : (∆k)ij ̸= 0}| ≤ n− k − d
up
i ∀i ∈ dk

where dupi is the up-degree of the k-face corresponding to the i-th row of the combinatorial
Laplacian.
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Proof. Because of Claim 3.3.10, every k-face has at most n − k − 1 down-up neighbours

that are not its up-down neighbours. Following Lemma 3.3.9, these elements correspond

exactly to the nonzero off-diagonal entries in ∆k. Adding the diagonal element (∆k)ii, we
obtain that the total number of nonzero entries in a row of the k-th combinatorial Laplacian

is at most n− k.
To improve this bound, notice that if a vertex v is adjacent to all the vertices of a k-face

(i.e, we have an up-neighbouring (k+1)-face), then v cannot be in any down-up neighbour
that is not an up-down neighbour as well. Thus, using Lemma 3.3.9 again, we can say that

every up-neighbour “cancels” the corresponding down-up neighbours in ∆k.

Hence, if the k-face corresponding to the i-th row of the combinatorial Laplacian has

up-degree d
up

i , then the number of nonzero entries in the i-th row of ∆k is not more than

n− k − d
up

i .

From this, we get the following corollary.

Corollary 3.3.12. ∥H∥1 ≤ 2n/λ̂.

Proof. Recall that H = I −∆k/λ̂. Thus,

∥H∥1 = max
j

∑
i

|Hij|

≤ max
j

∣∣∣∣(I)jj − (∆k)jj

λ̂

∣∣∣∣+ n · 1
λ̂
≤ 2

n

λ̂
,

where for the first inequality, we used the fact that |(∆k)ij| is either 1 or 0 if i ̸= j, and by

Lemma 3.3.9, it is 1 at most n times in every row or column. In the second inequality, we

used the fact that 0 ≤ (∆k)ii ≤ n. Combining, we have the result.

Now let us recall the path integral estimator Yz as defined in the previous section:

Yz(j0, j1, . . . , jz) = ⟨j0|jz⟩
z−1∏
ℓ=0

(−1)s(jℓ+1,jℓ)∥H·,jℓ∥1.

As a consequence of Corollary 3.3.12, it satisfies

|Yz| ≤ ∥H∥z1 ≤
(
2n

λ̂

)z
.

This improves the sample complexity in Lemma 3.3.5 fromO (n4z) /δ2 toO
((

2n

λ̂

)2z)
· 1
δ2

that is

(
n

λ̂

)O(z)

· 1
δ2
. This directly propagates to Algorithm 2, improving its time complexity

from

n
O
(

1√
γ
log 1

ε

)
to

(
n

λ̂

)O
(

1√
γ
log 1

ε

)
· poly(n).

The poly(n) term comes from the time required for sampling (Lemma 3.3.4). This completes

the proof of the second item of Theorem 3.3.1.
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3.4 Property testing very large Betti numbers

As a reminder, in graph property testing we wish to decide whether a graph has a

certain property, or whether it is “far” from having that property [Gol10]. In the dense
graph model, an n-vertex graph is ε-far from having a property if we have to add or remove

more than εn2
edges for the graph to have the property. A tester for a given property is

a randomised algorithm that, given query access to the adjacency matrix of a graph G,
can distinguish with constant success probability whether G has that property or is ε-far
from having it. A graph property is said to be testable if there exists a tester that makes

a number of queries that is a function only of ε, and so independent of the graph size.

Examples of testable properties are bipartiteness, triangle-freeness and, more generally,

monotone (closed under removing edges) and hereditary (closed under removing vertices)

graph properties [AS05, AS08].

In this section, we prove the following theorem (for a more formal statement see The-

orem 3.4.7).

Theorem 3.4.1 (Informal). The property of a clique complex having a (very) large k-th Betti
number is testable for constant k.

Recall that on an intuitive level, the k-th Betti number βk of a clique complex defined

by underlying graph G counts the number of independent k-dimensional “holes” in the

complex, which is bounded by the number of (k + 1)-cliques dk in G. More formally, βk
equals the rank of the k-th homology group.

In order to prove the theorem, in Section 3.4.1 we use the matroid notion of indepen-

dence to relate the Betti number βk to the number of “independent” Kk+2 cliques in the

graph, and we bound the total number of cliques as a function of the number of indepen-

dent cliques. Then, in Section 3.4.2, we build on these tools to reduce the problem of testing

large Betti numbers to that of (tolerantly) testing clique-freeness, which is known to be

testable. In particular, we show that for any constant k, having a large Betti number im-

plies that the graph is close to being Kk+2-free, while being far from having a large Betti

number implies that the graph is far from being Kk+2-free.

We prove the result for

δ(ε, 0) =
√
2ε , δ(ε, 1) = ε/3 , δ(ε, k) = 1/tower(k4 log(1/ε)) (k > 1).

Here the tower(ℓ)-function denotes a height-ℓ tower of powers of 2’s – this explains the

extra quantifier in “(very) large Betti numbers”. Nonetheless, this property is neither trivial

for constant k and ε nor monotone or hereditary. To see this, consider the (k + 1)-partite
graph which has dk = ( n

k+1
)k+1

and βk = ( n
k+1

− 1)k+1
(Proposition 3.2.5), and so βk/dk =

1−O(k2/n). This shows that for any k and δ > 0, there exist graphs with the property βk ≥
(1−δ)dk. (Compare this to our Proposition 3.4.9 which states that any large clique complex

that has few k-faces is close to having a large k-th Betti number.) Moreover, the quantity

βk/dk increases as a function of n, so the property cannot be monotone or hereditary.

3.4.1 Betti numbers via independent faces

In this section, we connect the number of independent k-faces with the total number of

k-faces, and connect the Betti number βk to the number of independent k- and (k+1)-faces
in the complex.
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The notion of independence of faces in Definition 3.2.10 leads to the following useful

observation. It is a direct consequence of the fact that a set of k-faces has zero boundary if

and only if the sum of the corresponding boundary vectors is the zero vector.

Proposition 3.4.2. In a k-dimensional simplicial complex (i.e., |Fk+1| = 0), a set of k-faces
is independent iff no subset of them forms a k-dimensional hole.

The independence of holes is defined similarly. A k-dimensional hole is a set of k-faces
(an element of Ck), and associated to it is a characteristic vector over {0, 1}dk . Remember

that in Section 3.2.3 we associated the same kind of (boundary) vectors to (k + 1)-faces: in
this sense a k-dimensional hole can be seen as the boundary of a virtual (k+1)-dimensional

object. This way, a set of holes is independent if the corresponding vectors are linearly

independent (over field {0, 1}). An analogue of Proposition 3.4.2 tells us that a set of k-
dimensional holes is independent iff no subset of them (as virtual (k + 1)-faces) forms a

(k + 1)-dimensional hole.

Let us denote the rank rk(Mk(K)) of the k-simplicial matroid, i.e. the size of a maximal

independent set of k-faces inK , by rk(K). Alternatively, we can say that rk = dim(im(∂k)).
We are going to need a lower bound on this value in terms of the total number of k-faces
dk(K). For the sake of completeness, we also include an upper bound in the statement.

Lemma 3.4.3. For any 0 ≤ k < n and any simplicial complex K

k + 1

n
dk(K) ≤ rk(K) ≤ min

{
dk(K),

(
n− 1

k

)}
.

Proof. Trivially, rk(K) ≤ dk(K). Moreover, the set of k-faces Fk(K) of any complexK can

be obtained from that of the full complex Fk(K
full
k ) by removing faces, and this can only

decrease the rank. Combined with Proposition 3.2.11, we get rk(K) ≤
(
n−1
k

)
.

Now let us prove the main part of the claim, which is the lower bound. We use a similar

argument to the one below Proposition 3.2.11. Let u be a vertex in K that is included in

a maximum number of k-faces (i.e., the vertex with the highest “k-face-degree”). These k-
faces that contain u are independent because each contains a (k−1)-face that the others do
not (the one without u), and this is a non-zero element in their boundary vector. As there

are dk many k-faces inK , each incident to k + 1 vertices, the average “k-face-degree” of a
vertex is (k + 1)dk/n. Thus, the independent set of k-faces defined by u has at least this

many k-faces, and so rk ≥ (k + 1)dk/n.

The next lemma shows a nice connection between the rank, the number of faces and

the Betti number. For k = 0, the formula gives the well-known graph formula c = n − t,
where t is the number of edges in a spanning forest, n is the number of vertices, and c is
the number of connected components. When k = 1 and the underlying graph is connected

and planar, it gives the Euler formula n + f = e + 2 (with n the number of vertices, f
the number of faces surrounded by edges and e the number of edges) because β1 = f − 1,
d1 = e, r1 = n− 1 and r2 = 0.

Lemma 3.4.4 (e.g. [Nan] Proposition 3.13.). For any simplicial complex,

βk = dk − rk − rk+1.
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Proof. By applying the rank–nullity theorem to ∂k, we get dk = dimker ∂k + dim im ∂k.
Now notice that dim im ∂k = rk because the independence of k-faces is defined through

their boundary vectors (Definition 3.2.10), thus we have dimker ∂k = dk−rk. From Defini-

tion 2.6.5 we can see that βk = dimker ∂k − dim im ∂k+1. Substituting what we got before,

we obtain βk = (dk − rk)− rk+1.

We also give an alternative, combinatorial proof of this lemma, which ties closer to the

spirit of this work.

Proof. The proof goes by induction. Let ∆ denote the simplicial complex being considered

and let us take a basis of the k-simplicial matroid over ∆. For the base case, we consider

the subcomplex where this is the set of all k-faces and all the higher dimensional faces are

removed, in which case rk = dk and βk = rk+1 = 0 and so the formula holds. In the

inductive step, we will put back all the removed faces. We start by adding the rest of the

k-faces one by one, and we argue that each added face creates exactly one new independent

hole.

First, note that adding a dependent k-face S to the complex creates at least one hole

(otherwise we could have added it to the basis by Proposition 3.4.2). Moreover, the hole

is independent of the previous ones because it contains the face S, which no other hole

contains so far.

Then, we prove that adding a k-face creates at most one hole. For contradiction, assume

that there is a k-face S such that when added to the set, more than one new independent

holes are created. We consider two of them, {S,R1, . . . , Rp} and {S, T1, . . . , Tq}, which we
call the “R-hole” and the “T -hole”. Necessarily, they have zero boundary (we denote the

boundary vectors the same way as the k-faces):

S +R1 + · · ·+Rp = 0

S + T1 + · · ·+ Tq = 0.

Adding the equations shows that {R1, . . . , Rp, T1, . . . , Tq} must also be a hole, call it the

“RT -hole”. It does not containS, so it must have been present before addingS. However, by
construction, the R-, T - and RT -holes are not independent, and so we get a contradiction.

Let ∆k denote the complex we have now: it contains exactly the faces of ∆ up to di-

mension k, and no faces of higher dimension. So far we proved that rk = dk − βk(∆k).
Let us consider the set of “fillable” k-cycles in ∆k, i.e. sets H of cardinality k + 2 where

all the (k + 1)-subsets of H are in ∆k. These are those holes of ∆k that may be filled by

(k + 1)-faces in ∆.

Now we continue the induction by adding to ∆k the (k + 1)-faces of ∆ one by one

(and in the end the higher dimensional faces as well) to get back∆. Each (k+1)-face fills a
fillable cycle, and it is independent of the previously added ones if and only if the hole being

filled is independent of the previously filled ones (as they are the same subset). Thus, every

time∆ gains an independent (k + 1)-face it loses an independent k-hole. This finishes the
proof, as adding faces of dimension larger than k+1 does not change any parameter in the

claim.

In the special case where k = 0 and the graph defined by the vertices and edges of K
is connected, we have β0 = 1, d0 = n and rk+1 = n − 1 (a spanning tree of the graph is a

maximal independent edge set). Thus, r0 has to be defined as 0, which makes sense if we

think about rk as rk = dim(im(∂k)).
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Remark 3.4.5. Let Tk = {S ⊆ V, |S| = k + 1} and A ⊆ Tk. In early works [CR70, Cor78],
only complexes of the form K full

k−1 ∪ A are analysed in detail. This family of complexes is not
enough to express the k-th Betti number of an arbitrary simplicial complex. For example, for
this restricted class of complexes Cordovil [Cor78, Proposition 1.2] showed that rk = dk − βk,
which is only a special case of Lemma 3.4.4 (with rk+1 = 0).

An easy consequence of Lemma 3.4.4 is the following statement.

Proposition 3.4.6. For any simplicial complex K and k ≥ 1, βk(K) ≤
(
n−1
k+1

)
.

Proof. InK full
k , we have βk = dk − rk − 0 =

(
n
k+1

)
−
(
n−1
k

)
=
(
n−1
k+1

)
, and removing k-faces

or adding (k + 1)-faces cannot increase this value.

3.4.2 Testing large Betti numbers

Now we turn to proving the main result of this section: that we can test whether a Betti

number is large. Below, we state our main theorem formally.

Theorem 3.4.7 (formal version of Theorem 3.4.1). Consider a clique complex K given by
query access to its underlying graph in the dense graph model. For any constant k and ε > 0,
there exists δ(ε, k) > 0 such that the graph property of having k-th Betti number βk(K) ≥
(1− δ)dk (over F2) is testable for any δ ≤ δ(ε, k) (with distance parameter ε).

Even though our results in Section 3.4.1 hold for general simplicial complexes, the main

theorem is restricted to clique complexes. The reason for this is that we wish to phrase our

results in the well-established setting of graph property testing. By constraining ourselves

to clique complexes, having a large Betti number becomes a graph property (of the under-

lying graph) rather than a property of an abstract simplicial complex. Also, this way we

can use some previous results from graph property testing, like the tolerant testability of

subgraph freeness (Lemma 3.2.7).

Warm-up: testing many components

The 0-th Betti number β0 of a clique complex K equals the number of connected com-

ponents of the underlying graphG. As an informal warm-up and a blueprint for the general

case, we show how to test whether β0 ≥ (1− δ)n. The argument involves two reductions.

First, we argue that having a large 0-th Betti number is equivalent to having few in-

dependent edges. From Lemma 3.4.4, we get that β0 = n − r1 − r0 where r0 = 0. Thus,
β0 ≥ (1 − δ)n is equivalent to r1 ≤ δn, so testing large β0 reduces to testing whether G
has a small number of independent edges.

Now comes the second reduction, in which we argue that testing whether G has few

independent edges can be reduced to tolerantly testing edge-freeness. For this, note that if

G has r1 ≤ δn independent edges then the total number of edges |E| ≤
(
δn+1
2

)
< δ2n2/2+

O(n). Note that if we applied Lemma 3.4.3, we would get |E| ≤ r1n/2 ≤ δn2/2. We get the

better bound by noticing that if there are δn independent edges, then we have a maximum

number of edges if all the independent edges are in the same connected component and

this component is a Kδn+1.

|E| < δ2n2/2+O(n) implies that soG is 1.1δ2/2-close to being edge-free. On the other
hand, if G is ε-far from having r1 ≤ δn, then G must also be ε-far from having r1 = 0, i.e
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from being edge-free. Therefore, we reduced the problem of testing β0 ≥ (1− δ)n to that

of tolerantly testing edge-freeness (with parameters ε1 = 1.1δ2/2 and ε2 = ε). It remains

to note that edge-freeness is tolerantly testable by Lemma 3.2.7.

General case

We now turn to proving our general result (Theorem 3.4.7), that having a Betti number

βk ≥ (1 − δ)dk is testable for constant k. Following the blueprint from the k = 0 case,

we first reduce the problem to testing whether there are few independent (k + 1)-faces,
and then reduce testing few independent (k + 1)-faces to tolerantly testing (k + 2)-clique
freeness.

We consider a clique complex K with underlying graph G. From Lemma 3.4.4, we get

that

dk − rk+1 ≥ βk = dk − rk+1 − rk, (3.1)

from which we can prove the following lemma.

Lemma 3.4.8 (Large Betti number⪯ few independent cliques). In a clique complexK with
underlying graph G, if βk ≥ (1 − δ)dk then rk+1 ≤ δdk. If G is ε-far from having βk ≥
(1− δ)dk inK , then it is ε/2-far from having rk+1 = 0, i.e.,G is ε/2-far fromKk+2-freeness.

Proof. The first part of the claim is clear from Equation (3.1). For the second part (being

ε-far), we will use the definition of ε-far (Definition 2.3.1). That is, we want to prove that

if every graph that is ε-close to G has βk < (1− δ)dk then every graph that is ε/2-close to
G satisfies rk+1 > 0.

For contradiction, assume that there is a particular H that is ε/2-close to G but has

rk+1 = 0. Since H is ε-close to G, it has βk < (1 − δ)dk, or equivalently rk + rk+1 > δdk
(using Lemma 3.4.4). Because of this, we have dk < rk/δ ≤

(
n−1
k

)
/δ (by Lemma 3.4.3).

With the construction of Proposition 3.4.9 below, we can modify H to get an H ′
that is

α = ε/2-close to H (thus still ε-close to G) and that has βk ≥ (1 − δ)dk. This contradicts
the assumption that every graph that is ε-close to G satisfies βk < (1− δ)dk.

Proposition 3.4.9. Consider a graphH = (V,E)with |V | = n sufficiently large, and assume
that H has at most

(
n−1
k

)
/δ k-faces. Then for any constant proximity parameter α, there is

another graph H ′ that is α-close to H and has βk ≥ (1− δ)dk.

Proof. Wegive a construction thatmodifiesH to getH ′
. Let us choose any vertex setS ⊆ V

of size |S| = αn. We delete all the edges that go between S and V \ S, and we modify the

edges within S to construct a complete (k+1)-partite subgraph. This modifies at most αn2

edges, so yields a graph H ′
that is α-close to H .

The subgraph of H ′
induced by S is a complete (k + 1)-partite graph with

(
αn
k+1

)k+1

many k-faces. Thus, in H ′
we have at most this amount plus the number of original k-

faces of H , i.e. dk(H
′) ≤

(
αn
k+1

)k+1
+
(
n−1
k

)
/δ. The number of independent k-holes in the

subgraph of H ′
induced by S is

(
αn
k+1

− 1
)k+1

(see Proposition 3.2.5), so in H ′
it is at least

this much: βk(H
′) ≥

(
αn
k+1

− 1
)k+1

. Clearly βk(H
′)/dk(H

′) = 1− O(1/n). For any δ > 0
this is at least 1− δ for n sufficiently large.

Remark 3.4.10. In Lemma 3.4.8, the second proximity parameter is not necessarily half of
ε, it can be arbitrarily close to it. For example, it could be 0.99ε, but then we have to use the
construction of Proposition 3.4.9 with α = 0.01ε instead of ε/2.
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For our second reduction, we use Lemma 3.4.3, which tells us that if rk+1 ≤ δdk then

dk+1 ≤
δ

k + 2
ndk ≤

δ

k + 2
n

(
n

k + 1

)
≤ δ

(k + 2)!
nk+2.

Combined with Lemma 3.4.8, we get that βk ≥ (1−δ)dk implies dk+1 ≤ δ
(k+2)!

nk+2
. We see

that a large Betti number implies a small number of Kk+2-s in the graph, while being far

from having a large Betti number implies being far from Kk+2-freeness (by Lemma 3.4.8).

In fact, by the graph removal lemma (Lemma 3.2.6), a small number of Kk+2-s implies

that the graph is close to being Kk+2-free. More specifically, for any ε′ > 0 there exists

δ = δ(k, ε′) > 0 such that if G has at most
δ

(k+2)!
nk+2

many Kk+2-s then G is ε′-close

to being Kk+2-free. By picking (say) ε′ = ε/2, it follows that we can test whether βk ≥
(1 − δ)dk by tolerantly testing whether G is ε/2-close or ε-far from Kk+2-freeness. By

Lemma 3.2.7, we know thatKk+2-freeness is indeed tolerantly testable, and this proves our

main Theorem 3.4.7.

To finish, we comment on the complexity of the algorithm. The complexity of (non-

tolerant)Kk+2-freeness testing is dominated by 1/δ. Using Remark 3.2.8, we obtain a com-

plexity of 2poly(1/ε)·2
O(1/δ)

for the tolerant version, which is what our algorithm uses. Hence,

we need to focus on the scaling of δ = δ(k, ε).
The current best upper bound in the graph removal lemma requires

δ(k, ε) ≤ 1/tower(5(k + 2)4 log(1/ε)) [Fox11]. As a reminder, tower(i) is a tower of twos
of height i (e.g., tower(3) = 22

2
). For the case of k = 0, we could avoid this: recall from

Section 3.4.2 that r1 ≤ δn implies that G is δ2/2-close to being edge-free. Similarly, for

k = 1 we can get a better bound: r2 ≤ δn2
implies that G is 3δ-close to being

triangle-free. Indeed, if we remove all the edges of a maximal independent triangle set (at

most 3δn2
edges), then any remaining triangle in the graph would contradict the

maximality of the chosen set. We leave the extension of similar arguments to higher k for

future work. In conclusion, we get a tester that distinguishes βk ≥ (1 − δ)dk from being

ε-far under the constraints

δ <
√
2ε (k = 0), δ < ε/3 (k = 1), δ < 1/tower(5(k + 2)4 log(1/ε)) (k > 1).
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Chapter 4

Quantum property testing

4.1 Introduction

Some researchers have already considered efficient quantum algorithms for property

testing both classical and quantum objects, see for instance [BFNR08, ABRW16, HLM17,

BDCG
+
20, AS19] and the survey [MdW16]. Notably, the authors in [ACL11] initiated the

study of bounded degree graph property testing in the quantum model. One important

result in this context is the result of [BDCG
+
20], who proved that there can be exponential

quantum advantage in the bounded degree graph model of property testing. However, as

mentioned in their paper, the graph property admitting the exponential quantum advantage

is not a natural one.

4.1.1 Property testing of directed bounded degree graphs

While all the aforementioned works consider undirected graphs, many real-world in-

stances (such as the world wide web) correspond to directed graphs. Consequently, Bender

and Ron [BR02] introduced a model of property testing for directed graphs in the classical

setting, focusing on the properties of acyclicity and connectivity. Following that work, we

open a new research line by studying quantum algorithms for testing directed graphs. As

we will see, by doing so we address new fundamental questions in the field of quantum

query complexity. Answering them requires using recent techniques and partially answer-

ing some new or open questions.

As described in [BR02], for bounded-degree directed graphs there are two natural query

models: (i) the unidirectional model, where the algorithm is allowed to query the outgoing

edges of a vertex, but not the incoming edges, and (ii) the bidirectional model, where the al-

gorithm can query both the incoming and outgoing edges of a vertex. Interestingly, [BR02]

showed that strong connectivity is testable in the bidirectional model (i.e., it can be tested

with a number of queries that depends on ε but not on N ), but it requires Ω(
√
N) queries

in the unidirectional model. Later, the testability of other graph properties like Eulerianity,

vertex and edge connectivity [OR11, YI10b, FNY
+
20, CY19] was also shown in the bidirec-

tional model. While there is a clear distinction between the two models, Czumaj, Peng and

Sohler [CPS16] showed that if a property is testable in the bidirectional model, then it has

a sublinear (i.e., o(N)) query complexity in the unidirectional model.

In this chapter, we consider a particularly important problem in the unidirectional
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model: the problem of testing subgraph-freeness. More precisely, we examine the prob-

lem of property testing “k-source-subgraph-freeness”, where the goal is to test H-freeness

for some constant-sized subgraph H with k “source components”, where a source compo-

nent is a strongly connected subgraph that has no incoming edges. This problem was first

studied by Hellweg and Sohler [HS12], and they provided a testing algorithm that performs

O(N1−1/k) queries. They also proved a tight lower bound of Ω(N2/3) for the k = 3 case

(see [HS12, Theorem 1 and Theorem 3]).

Recently, Peng and Wang [PW23] proved a matching lower bound for any constant k.
In particular, they showed that Ω(N1− 1

k ) queries are necessary for testing k-star-freeness
(which is a special case of k-source-subgraph-freeness) in the unidirectional model, for

arbitrary k (see [PW23, Theorem 1.2]). Notice that asymptotically the complexity of test-

ing k-star-freeness becomes Ω(N). This also proves that the aforementioned reduction of

[CPS16] cannot be made much stronger: for the property of k-star-freeness, the separation
between the query complexities in the bi- and unidirectional models is maximal, because

this property can be tested using constant number of queries in the bidirectional model.

4.1.2 Related works on collision finding

A closely related problem to finding k-stars in graphs is finding k-collisions in integer

sequences. The twomentioned classical papers on subgraph-freeness testing [HS12, PW23]

actually consider a collision-type intermediate problem for proving their lower bounds. As

we are also going to do so, let us look at some related, known results.

The problem of collision finding is a ubiquitous problem in the field of algorithm theory

with wide applications in cryptography. Here, given a sequence s of N integers, the goal

is to find a duplicate in s. If one has the guarantee that Θ(N) elements of the sequence are

duplicated, which is the case, for instance, when the sequence consists of uniformly ran-

dom integers from [N ], it is well-known that classically Θ(
√
N) queries are necessary and

sufficient due to the birthday paradox. In the quantummodel, this can be solved with query

complexityΘ(N1/3) by the algorithm of Brassard, Høyer and Tapp [BHT98]. The matching

lower bound was first stated for a specific set of hard instances known as 2-to-1 (i.e., each
integer appears exactly twice or not at all) by Aaronson and Shi [AS04]. For some constant

integer k ≥ 3, those results can be further extended to finding k-collisions in a random

input with suitable alphabet size, so that it contains Θ(N) k-duplicates with high proba-

bility. The classical query complexity for this problem is Θ(N1−1/k) [HS12, PW23], and

quantumly it is Θ

(
N

1
2

(
1− 1

2k−1

))
[LZ19]. The situation is more complex for non-random

inputs.

Remarkably, the complexity of testing k-collision-freeness (i.e., the absence of

k-collisions) is harder to settle on the lower bound side than the finding version. In this

work, we are going to focus on the hardness of distinguishing inputs that have linearly

many collisions from those that do not have any. For k = 2, the two problems have the

same complexity, since intuitively the only way to distinguish is to find a collision. This

can be formalised easily in the classical case. Quantumly, this is more challenging, but the

lower bound in [AS04] proved the hardness of distinguishing between 2-to-1 instances

and ones with no duplicate.

However, for larger k, distinguishing such inputs might be easier than finding a col-

52



lision. The classical upper bound of O(N1−1/k) queries is straightforward for the finding

variant. In the lower bounds of [HS12, PW23], the authors consider the distinguishing ver-

sion, so classically the question is settled. But in the quantum setting, the upper and lower

bounds of [LZ19] are tight only for finding k-collisions in random inputs, and for the dis-

tinguishing variant, we are not currently aware of anything better than the Ω(N1/3) lower
bound corresponding to the k = 2 case. To our knowledge, prior to our work, this problem
has not yet been studied in the quantum setting.

4.1.3 Our results

In this chapter, based on our paper [AMSS25], we present two lines of results for quan-

tum property testing of graph properties.

In the first line, we consider the problem of testing k-source-subgraph-freeness in the

unidirectional model. This problem is almost maximally hard for large k in the classical

regime, and we show that it admits an almost quadratic advantage in the quantum setting.

Theorem 4.1.1 (Restated in Theorem 4.3.3). The quantum query complexity of testing k-

source-subgraph-freeness in the unidirectional model is O
(
N

1
2

(
1− 1

2k−1

))
.

In order to prove the above result, we connect it to the problem of finding k-collisions.
In [LZ19], an algorithm is given for finding k-collisions in sequences of random integers.

We generalise this to the context of graph property testing in two ways: first, finding a

subgraph (instead of a collision); and second, considering graphs that are far from being

H-free (instead of random).

Moreover, we prove that this quantum advantage is nearly tight, by showing a quantum

lower bound using the method of dual polynomials.

Theorem 4.1.2 (Corollary of Theorem 4.1.3). The quantum query complexity of testing k-
source-subgraph-freeness in the unidirectional model is Ω̃

(
N

1
2(1−

1
k)
)
.

For proving graph property testing lower bounds, both the classical works of [HS12] and

[PW23] prove collision testing lower bounds using the proportional moments technique of

[RRSS09]. At the heart of this technique is a construction of two positive integer random

variables, X1 and X2, with different expectations but with the following conditions on the

first k − 1 moments: E[X1]/E[X2] = E[X2
1 ]/E[X2

2 ] = . . . = E[Xk−1
1 ]/E[Xk−1

2 ]. Such a

construction leads to a randomised query complexity lower bound of Ω(N1− 1
k ) for various

property testing problems such as k-collision-freeness [PW23]. Having a quantum version

of this technique has been identified as an important open problem [ABRW16], since this

could be used to pave the way to stronger quantum lower bounds in related settings. We

modestly made progress to this quest for the special case of testing k-collision-freeness.

In [LZ19], in addition to the algorithm we mentioned, they also prove a matching lower

bound showing that their algorithm for finding k-collisions in random inputs is optimal.

However, this time we cannot reuse those techniques for our purpose for twomain reasons.

First, the property testing variant of this problem could be easier. Moreover, their lower

bound technique requires random inputs and hence it does not apply to our case. This is

why we use yet another method, that of dual polynomials, to prove our lower bound.
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Theorem 4.1.3 (Restated in Theorem 4.4.1). The quantum query complexity of testing k-
collision-freeness is Ω̃

(
N

1
2(1−

1
k)
)
.

In the second line of results, we show that not all problems in graph property testing

admit such a quantum speedup. This fact even remains valid for the case of undirected

graphs both in the bounded-degree and dense models. In the bounded-degree model, we

consider the property testing variant of the famous problem of 3-colourability: namely,

distinguishing whether an unknown undirected graph G on N vertices can be properly

coloured with 3 colours, or one needs to modify a large fraction of its edges to make it

3-colourable. In the classical bounded degree setting, this problem has been studied by

[BOT02], who proved a lower bound of Ω(N) queries. In this work, we present a simple

argument that proves that there exists no sublinear quantum tester either for this problem.

Our result is stated as follows:

Theorem 4.1.4 (Restated in Theorem 4.5.1). The quantum query complexity of property
testing 3-colourability in undirected bounded-degree graphs is Ω(N).

We complement this with a similar result in the dense graph model: there is a graph

property that, when testing an N -vertex graph, has asymptotically maximal Ω(N2) query
complexity, even for quantum algorithms. Here, the property considered is not a natural

one, it was described in [GKNR12, Appendix A] for proving the lower bound in the classical

setting. We adapt their proof to prove the following statement.

Theorem 4.1.5 (Restated in Theorem 4.6.1). There is a graph property in the dense model
that its property testing requires quantum query complexity Ω(N2).

4.1.4 Technical overview

Subgraph-finding algorithm

We start by describing how to prove the upper bound result of Theorem 4.1.1 for testing

k-source-subgraph-freeness. We view the problem as a generalisation of the problem of

finding k-collisions and adapt an existing quantum algorithm for the latter problem. In

[LZ19], an algorithm is given for finding k-collisions in length-N sequences of integers that

contain Ω(N) k-collisions (e.g. k-to-1, or random sequence with appropriate parameters).

Their algorithm generalises the well-known collision finding algorithm of [BHT98]. On a

high level, the [LZ19] algorithm first finds several 2-collisions using Grover search like in

[BHT98], extends some of them to 3-collisions in a similar way, and so on until a k-collision
is found.

On the one hand, instead of random inputs, we consider the problem in the property

testing context; and on the other hand, we generalise collision-finding to subgraph-finding.

As a first step let us look at what happens when we consider the property testing version

of the k-collision problem. In order to be able to use the algorithm of [LZ19], we have to
prove that if a length-N sequence is far from k-collision-freeness then it contains many k-
collisions. Notice that the collisions are not necessarily distinct: if the input only contains

the same integer N times, it only contains one huge collision, but it is still ε-far from k-
collision-freeness for any ε < 1−k/N . Thus, what we need to show is that there are Ω(N)
many disjoint size-k sets of indices such that for each set, the sequence contains the same
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character at the positions of the set. This statement is true because otherwise, by modifying

all the characters that are in positions contained in a set (o(N) characters in total), we could
get a k-collision-free sequence which contradicts being far from k-collision-freeness.

When we make the second step of turning to testing subgraph-freeness, we need to

prove a variant of this statement: if an N -vertex graph G is far from H-freeness (for some

constant-sized subgraph H) then it contains Ω(N) many “source-disjoint” H-subgraphs.

This means that there areΩ(N)many suchH-subgraphs inG that the set of vertices in the

source components of eachH-subgraph are disjoint. We prove this fact in Proposition 4.3.2

and this allows us to further generalise the approach of [LZ19]: first find several partial so-

lutions where only a few source components of anH-subgraph are explored, and gradually

extend these (using Grover search coupled with constant-depth breadth first search) until

a complete H-subgraph is found.

Notice that this way our algorithm finds an H-subgraph in G promised that G is far

from H-freeness. This task is at least as difficult as property testing, where the algorithm

only has to distinguishwhetherG isH-free or far from anyH-free graph. So, our algorithm

provides an upper bound on the property testing variant of H-freeness.

Collision-freeness lower bound

Now we will discuss our approach to proving the lower bounds of collision-freeness

(Theorem 4.1.2) and k-source-subgraph-freeness (Theorem 4.1.3). We first give a simple

reduction from k-collision-freeness to k-star-freeness, which is a special case of k-source-
subgraph-freeness. This way, it is enough to prove a lower bound on testing k-collision-
freeness, and it implies the same result on testing k-source-subgraph-freeness. Since our
lower bound approach crucially depends on the (dual) polynomial method, let us start by

briefly discussing it.

The (dual) polynomial method As we discussed in Section 2.5.4, the polynomial

method is a common way to prove quantum query complexity lower bounds. As a

reminder, it relies on the fact that the acceptance probability of a T -query bounded-error

quantum algorithm is a polynomial of degree at most 2T [BBC
+
01]. This way, for proving

a quantum query complexity lower bound on calculating a function f , it suffices to argue

that any approximating polynomial of f has large degree. One of the key properties that

such lower bounds exploit is the symmetry that the function f may exhibit, such as

invariance under some permutation of the input. For example, the first tight lower bound

of Ω(n1/3) for the collision problem was proved in this way [AS04].

The polynomial method can bewritten in the form of a linear program, of which one can

take the dual. Byweak LP-duality, when using this dual characterisation for proving a lower

bound on function f , one needs to provide a “witness” of the approximating polynomial’s

high degree, say ∆. This witness is called the dual polynomial ψ and, in the easiest case of

total Boolean
1
functions f : {−1, 1}n → {−1, 1}, it needs to satisfy three properties.

(i) High correlation with f :
∑

x f(x)ψ(x) > δ.

(ii) Normalisation:

∑
x |ψ(x)| = 1.

(iii) Pure high degree ∆:

∑
x p(x)ψ(x) = 0, for every polynomial p with degree < ∆.

1. In this chapter, we use {−1, 1} where −1 corresponds to the “true value”.
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Above, the summations are all over x ∈ {−1, 1}n.
When the function f is partial, i.e. only defined on a subset D ⊂ {−1, 1}n, there is

some subtlety that could be handled in two ways (or even in a mixture or both): zero-out

the dual polynomial outsideD (corresponding to “unbounded degree”); or rewrite condition

(i) accordingly (corresponding to “bounded degree”):

(i’) High correlation with f :
∑

x∈D f(x)ψ(x)−
∑

x ̸∈D |ψ(x)| > δ.

Collision function The paper of [BKT20] also used the dual polynomial method for

proving quantum lower bounds for many problems, most of them being open before that

work. Similarly to that paper, we need to take several steps to be able to use the dual

polynomial method for the problem of property testing k-collision-freeness. This problem
was not addressed in [BKT20].

One of the main conceptual ideas in [BKT20] is to re-formulate the problem we study as

a composition of two simple Boolean functions. In that paper, powerful techniques are also

developed in order to design dual polynomials for simple functions that can be composed.

A common way of composing dual polynomials (called dual block composition) dates back

to [SZ09, Lee09, She13], but [BKT20] provides new tools for handling it efficiently. We are

going to reuse some of them, and also extend one in a way.

The first step is to find the right problem that can fit in the framework. We introduce

a partial symmetric function F defined on input strings s = (s1, . . . , sN) ∈ [R]N . The

domain of F corresponds to the following promise: either F has no k-collision, or it has
many k-collisions occurring for distinct values. More formally,

F (s) =


−1 if no integer occurs at least k times in s,

1 if more than γR distinct integers occur at least k times in s,

undefined otherwise.

This partial function is not a property testing problem, however it corresponds to a special

case of testing k-collision-freeness, which is therefore enough to prove lower bounds.

Binary encoding Now we encode the input string s = (s1, . . . , sN) ∈ [R]N into binary

variables xi,j storing whether si = j, as in [Aar02]. Doing so, starting from the function F
above, we end up with a function f defined over binary variables satisfying several sym-

metries, under the permutation of either i or j in xi,j .
Moreover, the symmetries of f allow the extension of the initial function f from the

very restricted set of binary inputs corresponding to valid strings, to the more general set

of binary inputs of Hamming weightN [ABRW16]. With further technicalities one can also

extend f to all binary inputs of Hamming weight at most N [BT20]. This is fundamental

because instead of being forced to zero out the dual polynomial outside the domain of f ,
we only need to do so on inputs of Hamming weight higher than N . Using the symmetry

of f , it can be shown that a lower bound on this modified, Boolean version implies a lower

bound on the original k-collision problem.

This way we end up with two promises on binary-encoded input domain. The first one

comes from the function F itself: we have the promise that the input contains either no k-
collision or it has many of them at different values. The second promise is the consequence

of the encoding: we want the binary encoding to have Hamming weight at most N . Let
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D denote the set of binary strings satisfying both promises, and let H≤N denote the set

of binary strings with Hamming weight at most N . For this case, we use the “double-

promise” version of the dual polynomial method, where, in order to prove that every δ-
approximating polynomial of f has degree at least ∆, the dual polynomial has to satisfy

four conditions, where the fourth one corresponds to zeroing out ψ on large Hamming

weight inputs [BKT20].

(i’) High correlation with f :
∑

x∈D f(x)ψ(x)−
∑

x∈H≤N\D |ψ(x)| > δ.

(ii) Normalisation:

∑
x |ψ(x)| = 1.

(iii) Pure high degree ∆:

∑
x p(x)ψ(x) = 0, for every polynomial p with degree < ∆.

(iv) No support on inputs with large Hamming weight: ψ(x) = 0, for every x /∈ H≤N .

Composition Coming back now to the definition of our Boolean function f , one can

rewrite it as a composition of simpler functions: GapORγ
R ⊙ THRk

N . Remember that by

composition, we mean (g⊙h)(x) = g(h(x1), . . . , h(xn)) (where x = (x1, . . . , xn) and each
xj = (x1,j, x2,j, . . . , xN,j) is a binary vector of dimension N ) and the domain is restricted

to bit strings of Hamming weight at most N . Above, THRk
N is the threshold function: it

is −1 if the input bitstring contains at least k many −1 (true) values, and is 1 otherwise;

andGapORγ
R is the gap version ofOR, which is 1 if the input only consists of 1s,−1 if the

input contains at least γR many −1 values, and is undefined otherwise.

In order to give a dual polynomial for this composed function, we start from a dual poly-

nomial for each part of the composition (ϕ and ψ), which were already given in [BKT20]

(in different contexts). Then we use a known way [SZ09, Lee09, She13] of composing dual

polynomials called the dual block composition, which provides a nearly good dual polyno-

mial ϕ ⋆ ψ for GapORγ
R ⊙ THRk

N . Indeed, by construction, the normalisation (ii) and the

pure high degree (iii) are guaranteed. However, the issue is that it is not 0 on bitstrings of

large Hamming weight thus (iv) is not satisfied, and the high correlation (i’) still has to be

proved.

To fix (iv), we use another result of [BKT20] which provides another dual polynomial ζ ,
that is close to ϕ ⋆ ψ and that is 0 on inputs having Hamming weight larger than N . Also,

it only changes the pure high degree by a polylogarithmic factor. Now the only remaining

task is to prove a large enough correlation (i’) of ϕ ⋆ ψ and GapORγ
R ⊙ THRk

N , so that ζ
still has high enough correlation. This high correlation proof (Lemma 4.4.23) is the most

technical part of this chapter.

High correlation: proof of Lemma 4.4.23 The statement we prove is the following

high correlation bound:∑
x∈D

(ϕ ⋆ ψ)(x) · (GapORγ
R ⊙ THRk

N)(x)−
∑
x/∈D

|(ϕ ⋆ ψ)(x)| ≥ 9/10.

In the proof of this lemma, we use Proposition 4.4.21 that is a more general statement of

some techniques used in several proofs of [BKT20]. But then we need to diverge from

their proof because it crucially relies on a certain one-sided error property (in the sense of

[BKT20, Lemma 6.11]) of the inner function of the composition, which is the OR function

in their case. Our inner function is the threshold function, which does not satisfy this

property, so we have to use some other properties of the dual polynomials in our proof.
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This different proof technique, in the more difficult, two-sided error setting, could be a step

towards obtaining a more general lower bound technique.

3-colourability lower bound

Let us now discuss our approach to proving the linear lower bound on the quantum

query complexity of testing 3-colourability (Theorem 4.1.4). Before proceeding to present

our approach, let us briefly discuss the classical lower bound of testing 3-colourability.
To prove the classical lower bound of 3-colourability, the authors in [BOT02] first studied

another problem called E(3, c)LIN-2, a problem related to deciding the satisfiability of a

system of linear equations. More formally, E(3, c)LIN-2 considers a system of linear equa-

tions modulo 2, where each equation has 3 variables and every variable appears in at most

c equations. Given such a system of linear equations, the goal is to distinguish if it is sat-

isfiable, or at least some suitable fraction of the equations need to be modified to satisfy it.

In [BOT02], is was proved that Ω(N) classical queries to the system of linear equations are

necessary for testing E(3, c)LIN-2.
After this, they designed a reduction from E(3, c)LIN-2 to 3-colourability such that sat-

isfying instances of E(3, c)LIN-2 are reduced to 3-colourable graphs, and far from satisfiable

instances of E(3, c)LIN-2 are mapped to far from 3-colourable graphs. Combining these two

arguments, in [BOT02] it was proved that Ω(N) classical queries are necessary for testing

3-colourability for bounded degree graphs.

The authors in [BOT02] used Yao’s minimax method [Yao77] to prove the linear lower

bound in testing E(3, c)LIN-2. In particular, they designed two distributions Dyes and Dno

such that the systems of linear equations in Dyes are satisfiable, whereas the systems of

linear equations in Dno are far from being satisfiable. A crucial ingredient of their lower

bound proof is a construction of a system of linear equations (represented as a matrix)

that are far from being satisfiable, but any δN rows of the matrix are linearly independent.

Hence, any subset of δN entries of the matrix will look uniformly random, and therefore

hard to distinguish from a satisfiable instance.

It is a known fact that distinguishing between a uniformly random string and a ℓ-wise
independent string is hard for quantum algorithms (see e.g. [ADW22]). Using this result,

we can construct suitable hard instances for E(3, c)LIN-2, such that testing E(3, c)LIN-2
remains maximally hard (requires Ω(N) queries) for any quantum algorithm. Combining

this hardness result with the reduction from E(3, c)LIN-2 to 3-colourability, we finally prove
that Ω(N) quantum queries are necessary for testing 3-colourability. We formally prove

this in Section 4.5.

Later, in [YI10a], the authors used various reductions to 3-colourability to argue that

several other important problems, including testing Hamiltonian Path/Cycle, approximat-

ing Independent Set/Vertex Cover size etc., are maximally hard to test in the classical model.

As a corollary of our quantum lower bound, we also obtain maximal quantum query com-

plexity for these problems.

A lower bound in the dense graph model

We show that there is a property in the dense graphmodel, that testing it has essentially

maximal, Ω(N2) quantum query complexity for N -vertex graphs (Theorem 4.1.5). The

property is the same described in [GKNR12, Appendix A]. On a high level, the construction
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of this property starts by taking a code C ⊂ {0, 1}n of appropriate size, such that taking

a uniformly random X ∈ C is ℓ-wise independent for some ℓ ∈ Ω(n). Codes of this kind
exist in the literature, and this property implies that Ω(n) quantum queries are necessary

for distinguishing a uniformly random X ∈ C from a uniformly random Y ∈ {0, 1}n. In
the following, the goal is to turn this into a graph property.

To a bitstring X ∈ {0, 1}n we assign a graph G1 of N vertices, where n =
(
N
2

)
, and

X is viewed as the description of the adjacency matrix of G1. Since we want to obtain a

graph property, we will need to ensure invariance under graph isomorphism. But we also

want to be able to recover the original bitstring X from the final graph, and for this, we

add a gadget to G1, which results in graph G2. Now we take a random permutation of the

vertices of G2 to get the final graph G3. The hard-to-test graph property P is the set of

graphs we can obtain at the end of this construction if we start with a bitstring X ∈ C.
The proof of this property’s hardness uses Yao’s principle [Yao77]: we construct two

distributions of graphs that are hard to distinguish. In particular, graphs inDyes are obtained

by taking a uniformly random X ∈ C, and putting it into the above construction. Dno is

defined similarly, but we start with a uniformly randomX ∈ {0, 1}n. Graphs inDyes always

satisfy P , and graphs in Dno are far from P with high probability. If an algorithm could

distinguish between Dyes and Dno, it would also distinguish a uniformly random string

from an Ω(n)-wise independent one, but this is known to require Ω(n) = Ω(N2) quantum
queries.

4.1.5 Open problems

Our work raises several important open questions. First, there is still a gap between our

lower and upper bound on the quantum query complexity of testing k-collision-freeness
and k-source-subgraph-freeness. In [MTZ20], the authors keep using the dual polyno-

mial method to improve the lower bound of [BKT20] for the k-distinctness problem. They

achieve this by using a slightly different dual polynomial forTHRk
N , where they allowmore

weight on the false positive inputs. This makes it impossible to prove the high correlation of

the dual and the primal function, so they use a modified block composition. Our technique

might be combined with this other approach to improve our lower bound to Ω̃(N1/2−1/(4k)).
The authors in [ABRW16] stated it as an open question if one could use a variant of the

proportional moments result of [RRSS09] to prove lower bounds on quantum algorithms.

We leave this question open, and conjecture that a similar result holds in the quantum

setting with a lower bound of Ω
(
N

1
2(1−

1
k)
)
. This work may be considered as a proof of

this conjecture for the special case of k-collision-freeness, and we hope that it will serve as
a step towards proving it in general.

In [CPS16], it was proved that if a graph property can be tested with O(1) queries in
the bidirectional model, then it can be tested usingO(N1−Ω(1)) queries in the unidirectional
model. It would be very interesting to investigate if it also implies a quantum tester with

query complexity say O(N1/2−Ω(1)).
Just like the BHT algorithm for collision finding [BHT98], our subgraph-freeness test-

ing algorithm in Section 4.3 requires QRACM. There is another collision finding quantum

algorithm that avoids the QRACM assumption of BHT, but its time complexity is higher:

O(N2/5) instead of O(N1/3) [CNPS17]. We are curious whether a something similar is

possible for our problems: still beating classical algorithms while not using much quantum
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memory.

Connection to distribution testing

For furthermotivation and open questions, wewould like to point out how the problems

and models presented in this chapter relate to the property testing of distributions. In

distribution testing, we have sampling access to an unknown distribution D and we have

to decide if D satisfies a property or it is far from any distribution that satisfies it. Let us

consider D = {p1, . . . , pR} with

∑
i∈[R] pi = 1, meaning that a sample from D gives i

with probability pi for all i ∈ [R]. There is a model, where we assume that every pi is an
integer multiple of 1/N , and sampling access to D is simulated as query access to a string

of integers (s1, . . . , sN) ∈ [R]N , where the frequency of each character i ∈ [R] is fi = Npi
and the string is randomly permuted. This way, a property of distributions can be translated

into a symmetric property of integer strings, which is the same model we had in the case

of collision-freeness testing.

A very common task in distribution testing is to decide whether two distributionsD1 =
{p1, . . . , pR} and D2 = {q1, . . . , qR} are the same or they are ε-far from each other. The

distance measure used is the total variation distance (or statistical difference), i.e. D1 and

D2 are ε-far if
∑

i∈[R] |pi − qi| > ε. There are two main settings for this problem.

— Unknown-Unknown (U-U): the algorithm has sampling access to both distributions

D1 and D2, so this is the case described above.

— Known-Unknown (K-U): the algorithm knows D1 and it has sampling access to the

unknown distribution D2. As uniform is known to be a maximally hard known dis-

tribution, this model is also referred to as uniformity testing, where we want to dis-

tinguish ∀i ∈ [R] : qi = 1/R from

∑
i∈[R] |qi − 1/R| > ε.

As for any property testing problem, we can consider the tolerant version of these prob-

lems: distinguish whether D1 and D2 are ε1-close or ε2-far in total variation distance (for

some ε1 < ε2). The following table contains the known results about the classical and quan-
tum query complexity of property testing distributions in the different settings, ignoring

the dependence on the proximity parameter(s). We can see that the classical results are all

essentially tight.

Classical Quantum

non-tolerant tolerant non-tolerant tolerant

K-U Θ̃(
√
N) Θ(N/ logN) Θ(N1/3) Θ(

√
N)

U-U Θ̃(N2/3) Θ(N/ logN) O(
√
N) and Ω(N1/3) Θ(

√
N)

Table 4.1 – Known bounds on the query complexity of distribution testing.

Let us focus on the quantum results. The non-tolerant K-U case for R = N is the same

problem as testing collision-freeness: translated to the integer string setting, a uniform

distribution corresponds to a string where each integer appears exactly once, so it is a

permutation; and a distribution that is ε-far from uniform corresponds to a string where

the frequencies satisfy

∑
i∈[R] |fi − N/R| > εN , i.e. it is ε-far from a permutation. Thus,

both the upper and lower bounds follow from those of the collision problem [BHT98, AS04,

Kut05].

60



In [BHH11], the authors give an O(
√
N) algorithm for approximating the statistical

distance between two unknown distributions and thus solving the tolerant U-U case, and

all the other cases that are special cases of it. In [BKT20] a lower bound of Ω(
√
N) is

given for the problem they call “statistical difference from uniform” that corresponds to the

tolerant K-U case, and the lower bound carries over to the more general tolerant U-U case.

An important open question in quantum distribution testing is to give a better algorithm

or lower bound in the non-tolerant U-U case. Several of the existing results in distribution

testing use models like we do in this chapter. In particular, our lower bound in Section 4.4 is

inspired by the mentioned result of [BKT20], and we hope that our results may help future

research to resolve this open problem.

4.2 Preliminaries

4.2.1 Notations and basic definitions

When dealing with Boolean variables, we will usually use b ∈ {−1, 1} instead of b′ ∈
{0, 1}. We can get to one from the other easily with the mapping b = 1−2b′, or its inverse,
which means that −1 is going to be treated as the “true” or “accepting” value. The reason

for using {−1, 1} is that when dealing with dual polynomials it is easier to use this notation.

We denote by 1n the length-n binary vector made only of 1s, and respectively−1n. The
Hamming weight |x|H of x ∈ {−1, 1}n is then defined as the number of −1s in x, that is
|x|H = |{i ∈ [n] : xi = −1}|. Let Hn

≤w = {x ∈ {−1, 1}n : |x|H ≤ w} denote the set

of length-n binary vectors with Hamming weight at most w. For any x ∈ R, sgn(x) = 1
when x ≥ 0, and −1 otherwise.

For a polynomial p, let deg(p) denote its degree. Remember that the composition

f ⊙ g : {−1, 1}nm → {−1, 1} of two Boolean functions f : {−1, 1}n → {−1, 1} and

g : {−1, 1}m → {−1, 1} is defined as (f ⊙ g)(x) = f(g(x1), . . . , g(xn)) where

x = (x1, . . . , xn) with each xi ∈ {−1, 1}m.
Finally, throughout this chapter, notationsO(·) andΩ(·)will be hiding the dependencies

on parameters ε, k and d that we consider to be constants.

4.2.2 Query complexity on graphs

As a reminder, in the undirected bounded-degree graph model, we have query access to

the adjacency list of an undirected graphG = (V,E)with maximum degree d, represented
as an oracleOG : V × [d] → V ∪ {⊥}. For any v ∈ V and i ∈ [d], OG(v, i) returns the i-th
neighbour of v if it exists and ⊥ otherwise.

For bounded-degree directed graphs, there exist two query models. In the bidirectional
model, we have access to both the outgoing and incoming edges of each vertex. Corre-

spondingly, it is imposed that both the in- and out-degrees of a vertex are bounded by d.
In the unidirectional model, we can only make queries to the adjacency list of the outgoing

edges, and we impose only that the out-degrees of a vertex are bounded by d. Since in this

work the primary focus will be on the latter model, let us formally define it below.

In the unidirectional bounded-degree graph model, we have query access to the adja-

cency list of a digraphG = (V,E) where the out-degree of every vertex is at most dout: for
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all v ∈ V : degout(v) ≤ dout. This access is represented as an oracle Oout
G : V × [dout] →

V ∪ {⊥} such that for any v ∈ V and i ∈ [dout], we have the following:

Oout
G (v, i) =

{
w, if w ∈ V is the i-th out-neighbour of v;

⊥, degout(v) < i.

For completeness, we note that in some of the previous work on the unidirectional

model they do impose the degree bound on both the out- and in-degree [CPS16]. This is

mostly because this makes for an easier comparison between the uni- and bidirectional

models, as this way they allow the same set of graphs. In this work we assume that only

the out-degrees are bounded by d.

Breadth-first search (BFS) is one of the most fundamental graph algorithms. It explores

the input graph G = (V,E) layer by layer: starting from a vertex first it explores its direct

neighbours then their neighbours etc. It can be implemented using a queue (FIFO - first in

first out) data structure in the following way.

In the beginning, only the starting vertex is in the queue and only it is marked as ex-

plored. Then we do the following procedure until the queue is not empty: query and add

to the queue each unexplored neighbour of the vertex at the queue head, mark them as

explored and remove the vertex head from the queue. The query and time complexity of

BFS is O(|V |+ |E|).
The vertices can also store their BFS-depth: the depth of a vertex v is 1 plus the depth

of the vertex that added v to the queue (and the depth of the starting vertex is 0). This way,

it is possible to run BFS up to some limited depth ℓ: vertices that would have depth larger

than ℓ are not added to the queue and the algorithm can terminate before exploring the

whole graph: it only explores the ℓ-neighbourhood of the starting vertex. If the depth limit

ℓ and the maximum degree of G are both constants, then the depth-ℓ BFS algorithm has

constant query (and time) complexity.

4.2.3 Problem definitions

We now define the problems we study and argue about certain relations between them.

While the problems are phrased as total decision problems, ultimately, we will care about

the quantum query complexity for testing the corresponding properties. The complexity is

going to be parameterised by a parameter k. Moreover, the parameter k, the degree bound
d and the proximity parameter ε, are all considered to be constants throughout this chapter.

Let us start with some definitions that will be useful to define our problems precisely.

Definition 4.2.1 (Source component). LetG = (V,E) be a digraph. A set S ⊆ V is called a
source component if it induces a strongly connected subgraph inG, and inG there is no edge
from V \ S to S.

Definition 4.2.2 (k-star). A k-star is a digraph on k+1 vertices and k edges with one centre
vertex, and k source vertices connected to the centre vertex.

Wewill now state the decision variant of several problems. The “property” correspond-

ing to a decision problem is the set of inputs that should be accepted in the decision problem.
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k-Source-Subgraph-Freeness

Parameter: Graph H of constant size with at most k source components

Query access: d-bounded out-degree directed graph G on N vertices (unidirectional

model)

Task: Accept iff G is H-free, that is, no subgraph of G is isomorphic to H

In [HS12, PW23], the authors examine the classical query complexity of testing k-
source-subgraph-freeness. They consider the bounded-degree unidirectional model, albeit

with a bound on both the in- and out-degrees.

For proving a lower bound, we will look at a special case of the main problem: k-star-
freeness. Notice that a k-star has k source components, hence a lower bound for this

problem implies the same lower bound for the more general k-source-subgraph-freeness
problem.

k-Star-Freeness

Parameter: Integer k ≥ 2

Query access: d-bounded out-degree directed graph G on N vertices (unidirectional

model)

Task: Accept iff G is k-star-free, that is, no subgraph of G is isomorphic to the k-star

For the lower bound on k-star-freeness testing, we are going to use as a “helper problem”

the decision variant of the k-collision problem.

k-Collision-Freeness

Parameter: Integer k ≥ 2

Query access: Sequence of integers s = (s1, . . . , sN) ∈ [R]N

Task: Accept iff s is k-collision-free, i.e. there is no i1, . . . , ik ∈ [N ] with si1 = · · · = sik
As discussed in the introduction of this chapter (Section 4.1.2), very little was known

about the property testing version of this problem prior to this work. We only know the that

the complexity is Θ(N1/3) when k = 2, and it is between Ω(N1/3) and O

(
N

1
2

(
1− 1

2k−1

))
for larger k.

Reduction from k-collision-freeness to k-star-freeness Now we are going to prove

that testing k-collision-freeness can be reduced to testing k-star-freeness (ormore generally

to testing k-source-subgraph-freeness). Thus, a lower bound on testing k-collision-freeness
yields a lower bound on testing k-source-subgraph-freeness. Also, an algorithm for testing

k-source-subgraph-freeness yields an upper bound on testing k-collision-freeness.
While the proof goes similarly to [HS12, Theorem 3], our reduction is not identical

becausewe have a slightly different “helper problem”. Since they consider that the in-degree

of vertices to be bounded as well, for the collision problem, they assume that the sequence

does not contain any collision of size larger than k (defined as k-occurrence-freeness).

Proposition 4.2.3. The problem of ε-testing k-collision-freeness of a sequence from [R]N can
be reduced to εN

d(N+R)
-testing k-star-freeness of an (N +R)-vertex sparse directed graph with

out-degree bound d ≥ 1.
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Proof. Let us assume that we have an algorithm that solves the k-star-freeness testing prob-
lem on graphs with out-degree bound d ≥ 1, and we want to use it to test k-collision-
freeness of a sequence s = (s1, . . . , sN) ∈ [R]N . We construct a digraph G that has N
outer vertices u1, . . . , uN and R inner vertices v1, . . . , vR; edges only exist from the outer

vertices towards the inner ones such that ui is connected to vj iff si = j. Observe that the
maximum out-degree in G is 1, so its out-degree is bounded by d for any d ≥ 1.

It is clear that s is k-collision-free iff G is k-star-free. On the other hand, if s is ε-far
from k-collision-freeness, it implies that more than εN edges have to be deleted in G to

make it k-star-free. Thus G is ε′ = εN
d(N+R)

-far from k-star-freeness.

4.3 Quantum algorithm for testing subgraph-freeness

In this section, we prove that there is a quantum speedup for testing H-freeness in

directed graphs with d-bounded out-degree, for any graphH that has k source components.

For large but constant k, the speedup is nearly quadratic. This problem was studied in

[GR02] in the classical setting. Our algorithm can be seen as a generalisation of the one

in [LZ19] to graphs and to the property testing setting. Let us start with the definition of

source-disjointness which will be used in the analysis of our algorithm.

Definition 4.3.1 (Source-disjointness). Let G be a directed graph such that it contains two
subgraphs H1 and H2. We say that H1 and H2 are source-disjoint if the union of the source
components of H1 is disjoint from the union of the source components of H2.

Moreover, we need to prove the following simple proposition. It shows that if G is far

from being H-free, then it contains many source-disjoint copies of H , that is, copies of H
that are source-disjoint subgraphs of G.

Proposition 4.3.2. LetH be an h-vertex graph with k source components. Assume that a d-
bounded out-degree directed graphG onN vertices is ε-far fromH-freeness. ThenG contains
at least εN/h = Ω(N) source-disjoint copies of H .

Proof. We prove the result by contraposition. Consider a maximal setM of source-disjoint

copies ofH inG and assume that |M | < εN/h. Let U denote the union of all the vertices in

the source components of the copies inM . This implies that if one deletes all the outgoing

edges of all the vertices in U , thenG becomesH-free. Indeed, if there remained anH-copy

then all its source components are disjoint fromM ′
(as in a source component every vertex

has at least one outgoing edge), contradicting the fact thatM was maximal.

Since |U | ≤ |M | · h, the number of those deleted edges is at most |U | · d ≤ |M | · hd <
εNd. Therefore, the resulting graph is both H-free and ε-close to the original graph G.
This proves the contraposition of the proposition.

4.3.1 The algorithm for k = 2

To illustrate the algorithm, we first consider the k = 2 case to build our intuition. In this
case, our algorithm generalises the BHT algorithm for collision finding [BHT98] to graphs.

The high-level idea is that if we manage to sample a vertex from each of the two source

components of an H-subgraph (a collision) then by querying their “surroundings” we will
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discover theH-instance. In the following, we set h = |V (H)|, number of vertices inH . We

use the shorthand BFS for breadth-first search.

1. Sample a uniformly random vertex subset S of size t = Θ(N1/3) in G. Perform a

depth-h BFS from every vertex in S .
2. Perform Grover search over the remaining vertices V \S in the following way. A

vertex v is marked if there exists another vertex u ∈ S such that u and v are from the

2 different source components of an H subgraph of G.

3. If any occurrence of H in G is found, output Reject. Otherwise, output Accept.

Note that if G is H-free, then the above algorithm will always accept. Now we need

to argue that if G is ε-far from being H-free, then with constant probability the above

algorithm will find a copy of H and thus reject.

By Proposition 4.3.2, with high probability, a constant fraction of the t vertices in S are

part of a source component in source-disjointH-subgraphs ofG. For such vertices, the BFS
in step 1 will discover the entire source component, as well as all other vertices reachable

from that source component in H . Then, in step 2, we search for a vertex that is in the

remaining source component of such an instance of H that we already partly discovered.

This can be verified by doing a depth-h BFS from it and checking if this completes an H-

instance with one of the previously sampled vertices’ neighbourhoods. As we mentioned,

by Proposition 4.3.2, with high probability there areΩ(t)manymarked vertices. This proves

the correctness of the algorithm.

Finally, we bound the algorithm’s query complexity. Step 1 makes O(t) = O(N1/3)
many (classical) queries. In step 2, we use Theorem 2.5.4 and Remark 2.5.5: checking

whether a vertex is marked requires running a depth-h BFS from it, which costs c = O(1)
queries. We argued that there are Ω(t) many marked vertices, so Grover search makes

O(
√
N/t) = O(N1/3) quantum queries.

Note that, just like in the original BHT algorithm, we need QRACM (Quantum Random

Access Classical Memory) to perform step 2, because Grover search needs to access the

results of the classical queries of step 1 in superposition. In particular, the oracle of Grover

search, that tells which elements are marked, will be implemented as a QRACM.

4.3.2 The algorithm for general k

We are now ready to state our general upper bound result. The algorithm and proof

follow the same lines as the k = 2 case.

Theorem 4.3.3 (Restatement of Theorem 4.1.1). Let H be a digraph of constant size with
k source components. The quantum query complexity of testing H-freeness of an N -vertex

graph with bounded out-degree in the unidirectional model is O
(
N

1
2

(
1− 1

2k−1

))
.

Proof. In order to extend the k = 2 case described above to larger k, we first try to find

many partial H-instances with k − 1 source components found, and then extend one of

them to a complete H-instance. We present a brief description of our algorithm below,

where h is the number of vertices of H :

1. Sample a uniformly random vertex subset S1 in G of size t1. Perform a depth-h BFS

from every vertex in S1. Let S ′
1 = S1.
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2. For iterations i = 2 to k − 1, do the following:

(a) Perform Grover search ti times on the vertices V \S ′
i−1 in the following way. A

vertex v is marked if there exist i− 1 other vertices uj ∈ Sj for each j ∈ [i− 1]
such that u1, . . . , ui−1 and v are from i different source components of an H
subgraph of G. If we do not find ti vertices like this, output Reject, otherwise
let Si denote the set of the vertices v that we found.

(b) Set S ′
i = S ′

i−1 ∪ Si.

3. Perform Grover search on V \S ′
k−1 to find a complete H-instance. I.e., a vertex v is

marked if there exist k − 1 other vertices uj ∈ Sj for each j ∈ [k − 1] such that

u1, . . . , uk−1 and v are from the k different source components of an H subgraph of

G.

4. If any occurrence of H in G is found, output Reject and terminate the algorithm.

Otherwise, output Accept.

The correctness proof is similar to the k = 2 case. Proposition 4.3.2 tells us that in S1 there

are Ω(t1) many vertices that are from a source component of an H-copy. Because of the

source-disjointness of the H-copies, when i = 2, there are Ω(t1) many 1-partial solutions

that can be extended to a complete H instance by disjoint remaining source components.

As Grover search provides uniformly random marked elements, a constant fraction of the

t2 many 2-partial solutions are actually extendable to H in a similar, disjoint way. This

continues to be true in each iteration: (with high probability) a constant fraction of the ti−1

many (i− 1)-partial solutions are extendable to complete H instances by disjoint remain-

ing source components. This way, the last step is going to find an H-subgraph with high

probability.

To bound the query complexity, first note that in every application of Grover search,

checking whether a vertex is marked (depth-h BFS) takes O(1) queries. The first itera-

tion’s Grover searches find t2 partial H-instances with 2 of its source components found,

which takes O(t2
√
N/t1) queries (by Theorem 2.5.4). Similarly, for i-th iteration there

are Ω(ti−1) marked elements (see the argument in the previous paragraph), so the algo-

rithm performs O(ti
√
N/ti−1) quantum queries for every i ∈ [k − 1]. Finally, finding

one complete H-instance costs O(
√
N/tk−1) queries. Thus, the total query complexity is

O(t1 +
∑k−1

i=1 ti+1

√
N/ti) with tk = 1. Similar to the multi-collision algorithm in [LZ19,

Section 3], we can equate all terms by setting ti = Θ
(
N

2k−i−1

2k−1

)
, which yields the final

quantum query complexity O
(
N

1
2

(
1− 1

2k−1

))
.

We note that there is no need for a polylog(N) factor in the query complexity, which

could come from a commonly used way to boost up the success probability of Grover’s

algorithm. This stems from two observations. First, consider the case where K among N
elements are marked, with a given lower bound L ≤ K , and we wish to find R ≤ L such

elements. If R ≪ L, then (say) 100R repetitions of Grover should return at least Rmarked

elements with probability at least 2/3 while making O(R
√
N/L) queries, without extra

log-factors. This is because one can simply ignore any unsuccessful Grover runs. In our

case we set R = ti+1 ≪ L = ti. Finally, since there are k iterations in the algorithm and k
is constant, a factor of log k would not add up to the query complexity of our algorithm in

terms of N .
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4.4 Collision-freeness lower bound

As discussed in Section 4.2, we are going to prove a lower bound on the problem of

testing k-collision-freeness.

Theorem 4.4.1 (Restatement of Theorem 4.1.3). Let k ≥ 3 and
0 < ε < 1/(4k−1⌈20(2k)k/2⌉) be constants. Let N be a large enough positive integer. Then
the quantum query complexity of property testing of k-collision-freeness of a sequence of
integers S = (s1, . . . , sN) ∈ [N ]N with parameter ε is Ω(N1/2−1/(2k)/ ln2N).

The proof of the theorem is at the end of Section 4.4.3. Observe that Theorem 4.1.2 is

implied by Theorem 4.4.1 and the reduction in Proposition 4.2.3. Our proof mostly follows

the structure of [BKT20, Section 6.1], and in particular, it uses the notion of dual polynomi-

als for non-Boolean partial symmetric functions. Our main technical contribution in this

section is the proof of Lemma 4.4.23, because the corresponding proof in [BKT20] crucially

relies on a fact that does not hold for our problem. We will discuss it in detail below.

In the following, we first state some general results related to the polynomial method

for non-Boolean functions, then we use these results for our problem to state the exact

statement that we prove in the technical part.

4.4.1 The (dual) polynomial method

For Boolean functions We consider a property on Boolean vectors as a function f :
D ⊆ {−1, 1}n → {−1, 1}. Since the work of [BBC

+
01] it has been known that the ac-

ceptance probability p(x) of a T -query bounded-error quantum algorithm on input x ∈ D
is a polynomial of degree at most 2T (see Section 2.5.4). Thus, since we went from {0, 1}
to {−1, 1}, the polynomial (1 − 2p(x)) must be a good approximation of f . Observe that
(1 − 2p(x)) remains bounded outside D since p(x) remains a probability defined by the

algorithm, with no constraint.

In order to formalise this, we first define the notion of bounded approximate degree of

a partial Boolean function (compare to Definition 2.5.1 for total functions), and then relate

it to its query complexity.

Definition 4.4.2 (Bounded approximate degree). Let f : D ⊆ {−1, 1}n → {−1, 1} and
δ > 0. A polynomial p : {−1, 1}n → R δ-approximates f on D if

∀x ∈ D : |f(x)− p(x)| < δ and ∀x ∈ {−1, 1}n \D : |p(x)| < 1 + δ.

Moreover, the bounded δ-approximate degree bdegδ(f) of f on D is the smallest degree of
such a polynomial.

The following lemma connects quantum query complexity and approximate bounded

degree (compare to Theorem 2.5.2 for total functions).

Lemma 4.4.3 ([BBC
+
01, AAI

+
16]). Let f : D ⊆ {−1, 1}n → {−1, 1} and δ > 0. If

a quantum algorithm, having query access to any input x ∈ D, computes f(x) with error
probability at most δ using T queries, then there is a polynomial of degree at most 2T that
2δ-approximates f on D.
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In particular, this implies that the quantumquery complexity for computing f with error
δ is at least bdeg2δ(f)/2, and so we will focus on proving lower bounds on the approximate

bounded degree.

We now turn to a dual characterization of this polynomial approximation. This method

of dual polynomials dates back to [She11, SZ09] for initially studying communication com-

plexity. Below, we refer to some results stated in [BKT20] for studying query complexity.

Definition 4.4.4 (Pure high degree). A function ψ : {−1, 1}n → R has pure high de-
gree at least ∆ if for every polynomial p : {−1, 1}n → R with deg(p) < ∆ it satisfies∑

x∈{−1,1}n p(x)ψ(x) = 0. We denote this as phd(ψ) ≥ ∆.

One can observe that phd(ψ) ≥ ∆ is equivalent to the fact that all the monomials of ψ
are of degree at least ∆. Then by weak LP duality, we get the following result.

Theorem 4.4.5. [BKT20, Proposition 2.3] Let f : D ⊆ {−1, 1}n → {−1, 1} and δ > 0. Then
bdegδ(f) ≥ ∆ iff there exists a function ψ : {−1, 1}n → R such that∑

x∈D

ψ(x)f(x)−
∑

x∈{−1,1}n\D

|ψ(x)| > δ; (4.1)

∥ψ∥1 =
∑

x∈{−1,1}n
|ψ(x)| = 1; (4.2)

phd(ψ) ≥ ∆. (4.3)

Now we are going to discuss how to extend these results to non-Boolean functions,

which is the interesting case for us.

For non-Boolean partial symmetric functions We now consider a property of a se-

quence of integers as a function F : D ⊆ [R]N0 → {−1, 1}. The symbol 0will play a special
role that will be exhibited later. Unfortunately, one cannot just take the polynomial of those

integers. The standard approach (see [Aar02]) is to encode s = (s1, . . . , sN) ∈ [R]N0 into

binary variables x = (xi,j)i∈[N ],j∈[R]0 ∈ {−1, 1}N(R+1)
encoding whether si = j as follows:

xi,j = −1 if si = j, and xi,j = 1 otherwise. Let H
N(R+1)
b ⊆ {−1, 1}N(R+1)

be the set of all

possible encodings of vectors s, that is for every i ∈ [N ] there is exactly one j ∈ [R]0 such
that xi,j = −1.

This way, we can represent F as a function Fb : Db → {−1, 1}whereDb ⊆ H
N(R+1)
b is

the set of valid encodings of D. More precisely, each x ∈ Db satisfies two constraints: (1)

x ∈ H
N(R+1)
b ; and (2) x encodes some s ∈ D. Since only inputs x ∈ H

N(R+1)
b correspond to

possible input sequences of an algorithm, the polynomials derived from a quantum query

algorithm might not be bounded outside of that set. This implies a slight modification on

the definition of approximate degree, in order to relate it to query complexity as in [Aar02].

But before doing this, we are going to relax the constraints on the domain Db in the

case of symmetric functions, while we decrease its dimension. When F is symmetric (i.e.
F (s) = F (s ◦ πN) for any permutation πN of [N ]), one can instead define a function F≤N
with weaker constraints by removing the variables corresponding to the symbol 0. Define
HNR

≤N as the set of length-(NR) binary vectors with Hamming weight at most N . Given

any x ∈ HNR
≤N , we define its frequency vector z(x) = (z0, z1, . . . , zR) with zj = #{i :
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xij = −1}, for 1 ≤ j ≤ R, and z0 = N − z1 − . . . − zR. From the vector z(x), one can
define a valid sequence of integers s(x) ∈ [R]N0 : it can be any sequence from [R]N0 that has

frequency vector z(x). Now we can define F≤N on domain D≤N as

D≤N = {x ∈ HNR
≤N : s(x) ∈ D} and F≤N(x) = F (s(x)).

In fact, for the special case of total symmetric functions F , we can transform Fb onH
N(R+1)
b

to F≤N on HNR
≤N due to the symmetry of F .

In [Amb05], it was proved implicitly that for symmetric F , both Fb and F≤N variants

are equally hard to approximate by polynomials. We now define the appropriate notion

of approximate degree for F≤N and relate it to the query complexity of F as in [BKT20,

Theorem 6.5].

Definition 4.4.6 (Double-promise approximate degree). Let F : D ⊆ [R]N0 → {−1, 1} be
symmetric and δ > 0. Define HNR

≤N ⊆ {−1, 1}NR and F≤N : D≤N ⊆ HNR
≤N → {−1, 1} as

above. A polynomial p : {−1, 1}NR → R double-promise δ-approximates F on D if

∀x ∈ D≤N : |F≤N(x)− p(x)| < δ and ∀x ∈ HNR
≤N \D≤N : |p(x)| < 1 + δ.

Moreover, the double-promise δ-approximate degree dpdegδ(F≤N) of F≤N on D≤N is the
smallest degree of such a polynomial.

The following lemma connects quantum query complexity and double-promise approx-

imate degree.

Lemma 4.4.7 ([Aar02, Amb05],[BT20, Theorem 3.9]). Let F : D ⊆ [R]N0 → {−1, 1} be
symmetric and δ > 0. Define HNR

≤N ⊆ {−1, 1}NR and F≤N : D≤N ⊆ HNR
≤N → {−1, 1} as

above. If a quantum algorithm computes F on D with error δ using T queries, then there is a
polynomial p of degree at most 2T that double-promise 2δ-approximates F≤N on D≤N .

As for the Boolean case, this implies that a quantum algorithm computing F with er-

ror δ must make at least dpdeg2δ(F≤N)/2 queries. We can now also take the dual of this

characterization.

Theorem 4.4.8 ([BKT20, Proposition 6.6]). Let F : D ⊆ [R]N0 → {−1, 1} be symmetric.
Define F≤N : D≤N → {−1, 1} as above. Then dpdegδ(F≤N) ≥ ∆ iff there exists a function
ψ : {−1, 1}NR → R such that

∀x ∈ {−1, 1}NR \HNR
≤N , ψ(x) = 0; (4.4)∑

x∈D≤N

ψ(x)F≤N(x)−
∑

x∈HNR
≤N \D≤N

|ψ(x)| > δ; (4.5)

∥ψ∥1 = 1 and phd(ψ) ≥ ∆. (4.6)

4.4.2 Preparation

Technically, the problem we use in the proof of Theorem 4.4.1 is slightly more restricted

than k-collision-freeness: we want to distinguish no k-collision from many distinct colli-

sions of size at least k.
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Definition 4.4.9 (Collision function). Let γ ∈ (0, 1). The symmetric function Collisionk,γN,R :

DCollisionk,γN,R
⊂ [R]N → {−1, 1} is defined by Collisionk,γN,R(s) = −1 if no integer occurs at

least k times in s, Collisionk,γN,R(s) = 1 if there are more than γR distinct integers that occur
at least k times in s, and it is undefined otherwise.

Notice that this problem is not a property testing problem, as the outcome is not deter-

mined based on the distance between inputs. Nevertheless, it is a valid promise problem

and a special case of testing k-collision-freeness, that we use to prove a lower bound on the

other problems of interest.

To prove a bound on theCollision function, we will actually relate it to the composition

of two more elementary functions g ⊙ h. Let us define (i) the threshold function THRk
N :

{−1, 1}N → {−1, 1}which is−1 if the input bitstring contains at least k many−1s, and it
is 1 otherwise; and (ii) the gap version of OR, that is GapORγ

R : DGapORγ
R
⊂ {−1, 1}R →

{−1, 1} which takes value 1 if the input is 1R, −1 if the input contains at least γR many

−1s, and is undefined otherwise. We show that the double-promise approximate degree of

GapORγ
R ⊙ THRk

N lower bounds the quantum query complexity of the collision problem.

Lemma 4.4.10. Let k ≥ 3, 0 < γ < 1, δ > 0 and c > 2 be constants such that N/c ≤ R ≤
N/2. If the double-promise δ-approximate degree of GapORγ

R ⊙ THRk
N on domain further

restricted to HNR
≤N is at least∆, then every quantum algorithm computing Collisionk,γ/cN,N with

error δ/2 must require at least ∆/2 queries.

Before proving this lemma, we prove some helper propositions. In order to apply the

dual polynomial method for partial symmetric functions, we start by proving

that Collisionk,γ
′

N,R′ is at least as hard as a very similar problem. We introduce a

“dummy-augmented” version dCollisionk,γN,R : DdCollisionk,γN,R
⊆ [R]N0 → {−1, 1} of the

problem Collisionk,γN,R for the purpose of proving Lemma 4.4.10, where now the input

sequence can have integer 0, but those 0s are just ignored when they occur. We show that

it is enough to prove a lower bound for this second version.

Proposition 4.4.11. Let k ≥ 3, 0 < γ < 1 and c > 2 be constants such that N/c ≤ R ≤
N/2. Then dCollisionk,γN,R can be reduced to Collisionk,γ/cN,N .

Proof. An input to dCollisionk,γN,R is a sequence s = (s1, . . . , sN) where each si ∈ [R]0. Let
us define a family of functions Ti that map from [R]0 to [R

′] forR′ = R+ ⌈N/2⌉: Ti(s) = s
if s > 0 and Ti(0) = R + ⌈i/2⌉.

Notice that (s1, . . . , sN) is free from k-collisions (ignoring collisions of the dummy char-

acter 0) if and only if (T1(s1), . . . , TN(sN)) is free from k-collisions, i.e. new k-collisions
cannot be created by this transformation (only 2-collisions but we assume k ≥ 3).

On the other hand, if (s1, . . . , sN) contains more than γR distinct k-collisions, then so

does (T1(s1), . . . , TN(sN)). Since γR ≥ (γ/c)N , Collision
k,γ/c
N,N will reject.

The following proposition relates dCollision to GapORγ
R ⊙ THRk

N .

Observation 4.4.12. The domain of GapORγ
R ⊙ THRk

N is

DGapORγ
R⊙THRk

N
= {x ∈ {−1, 1}NR : (THRk

N(x1), . . . ,THR
k
N(xR)) ∈ HR

≥γR ∪ {1R}}.
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where x = (x1, . . . , xR) with each xi ∈ {−1, 1}N .
The domain of (dCollisionk,γN,R)

≤N is

D(dCollisionk,γN,R)≤N = HNR
≤N ∩DGapORγ

R⊙THRk
N
.

Moreover, restricted to the latter domain they are the same function:

(dCollisionk,γN,R)
≤N = GapORγ

R ⊙ THRk
N .

We are now ready to give the proof of Lemma 4.4.10.

Proof of Lemma 4.4.10. Using Proposition 4.4.11, instead of Collision
k,γ/c
N,N we can consider

dCollisionk,γN,R (with the appropriate parameters) to show a lower bound. By Observa-

tion 4.4.12, we can use Lemma 4.4.7 to relate the query complexity of dCollisionk,γN,R to the

double-promise degree of GapORγ
R ⊙ THRk

N with domain further restricted to HNR
≤N .

4.4.3 Main lower bound

Let us fix f = (GapORγ
R ⊙ THRk

N) with domain D = D(GapORγ
R⊙THRk

N ) (See Ob-

servation 4.4.12). For technical reasons, in the rest of the section, we fix k ≥ 3 and

N = ⌈20(2k)k/2⌉R. 2
We first define a construction used to compose dual polynomials, which was introduced

in earlier line of work [SZ09, Lee09, She13].

Definition 4.4.13 (Dual block composition). The dual block composition of two functions
ϕ : {−1, 1}n → R and ψ : {−1, 1}m → R is a function ϕ ⋆ ψ : {−1, 1}nm → R defined as

(ϕ ⋆ ψ)(x) = 2n ϕ(sgn(ψ(x1)), . . . , sgn(ψ(xn)))
∏
i∈[n]

|ψ(xi)|

where x = (x1, . . . , xn) and xi ∈ {−1, 1}m, for i ∈ [n].

This subsection is dedicated to the proof of the following lemma which, together with

Lemma 4.4.10, implies Theorem 4.4.1. Observe that we have to zero out the support of

the dual polynomial outside of HNR
≤N , since our target domain is not D but D ∩ HNR

≤N in

Lemma 4.4.10.

Lemma 4.4.14. Let N = ⌈20(2k)k/2⌉R and 0 < γ < 1/4k−1. Then there exists a function
ζ : {−1, 1}NR → R such that

∀x ∈ {−1, 1}NR \HNR
≤N , ζ(x) = 0; (4.7)∑

x∈HNR
≤N∩D

ζ(x)f(x)−
∑

x∈HNR
≤N \D

|ζ(x)| > 2/3; (4.8)

∥ζ∥1 = 1 and phd(ζ) ∈ Ω
(√

N1−1/k/ ln2N
)
. (4.9)

2. These parameters are used in [BKT20] to prove Proposition 4.4.20, which we will use.

71



Proof. The construction of ζ starts by block composing (Definition 4.4.13) two dual polyno-

mials ϕ, ψ, one for GapORγ
R and one for THRk

N . The dual polynomial ϕ for GapORγ
R

is given by Proposition 4.4.15. The dual polynomial ψ for THRk
N is given by Proposi-

tion 4.4.17.

The block composition ϕ ⋆ ψ is a good candidate for the dual polynomial of f . Indeed,
Lemma 4.4.23 shows that it satisfies Equation (4.8), showing correlation at least 9/10 >
2/3. One could also check that it satisfies Equation (4.9). Nonetheless, it does not satisfy

Equation (4.7).

We can now use Lemma 4.4.18 to argue that there exists another dual polynomial ζ that
satisfies Equation (4.7) and Equation (4.9). Moreover, this ζ is close to ϕ ⋆ ψ so that it also

satisfies Equation (4.8), with the weaker but sufficient correlation 9/10− 2/9 > 2/3. This
concludes the proof.

As we have seen, the previous proof relies on several results, now we are going to zoom

on each of them. The first one provides a dual polynomial for OR.

Proposition 4.4.15. Let ϕ : {−1, 1}R → R be such that ϕ(−1R) = −1/2, ϕ(1R) = 1/2,
and ϕ(z) = 0 for all z ∈ {−1, 1}R \ {−1R, 1R}. Then ∥ϕ∥1 = 1, phd(ϕ) ≥ 1, and∑

x∈{−1,1}R
ϕ(x)OR(x) = 1.

Proof. ∥ϕ∥1 = |1/2|+ | − 1/2| = 1.
For any constant c,

∑
x∈{−1,1}R c · ϕ(x) = c/2− c/2 = 0, thus phd(ϕ) ≥ 1.∑

x∈{−1,1}R ϕ(x)OR(x) = −1/2 · (−1) + 1/2 · 1 = 1.

Next, we look at an explicit dual polynomial for the threshold function and some prop-

erties it satisfies.

Definition 4.4.16. LetM ∈ N and α, β > 0. We say that a function ω : [M ]0 → R satisfies
the (α, β)-decay condition if

∑
t∈[M ]0

ω(t) = 0,
∑

t∈[M ]0
|ω(t)| = 1 and |ω(t)| ≤ αe−βt/t2.

In [BKT20, Section 5.1] the authors define a dual polynomial ψ of THRk
N in the follow-

ing way. Let k,N ∈ N, and T an integer such that k ≤ T ≤ N . Let c = 2k⌈N1/k⌉ and
m = ⌊

√
T/c⌋. Define set S = {1, 2, . . . , k} ∪ {ci2 : 0 ≤ i ≤ m}. Define a univariate

polynomial

ω(t) =
(−1)t+T−m+1

T !

(
T

t

) ∏
r∈[T ]0\S

(t− r).

Then let ψ : {−1, 1}N → R be ψ(x) = ω(|x|H)/
(
N

|x|H

)
for x ∈ HN

≤T and ψ(x) = 0
otherwise.

Let D+ and D− denote the set of false positives and that of false negatives respec-

tively if ψ is considered as a hypothesis for THRk
N , i.e. D+ = {x ∈ {−1, 1}N : ψ(x) >

0,THRk
N(x) = −1} and D− = {x ∈ {−1, 1}N : ψ(x) < 0,THRk

N(x) = 1}.
They show that ψ and ω have the following properties.

Proposition 4.4.17. [BKT20, Proposition 5.4] Let ω and ψ be the polynomials defined above.
Then the following are true.

1.
∑

x∈D+
|ψ(x)| ≤ 1

48N
;
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2.
∑

x∈D−
|ψ(x)| ≤ 1

2
− 2

4k
;

3. ∥ψ∥1 = 1;

4. phd(ψ) ≥ c1
√
k−1TN−1/k;

5. ω satisfies the (α, β)-decay condition with α = (2k)k and β = c2/
√
kTN1/k.

The next lemma is already adapted to our functions; it is a consequence of more general

results.

Lemma 4.4.18. Let N = ⌈20(2k)k/2⌉R, ϕ : {−1, 1}R → R from Proposition 4.4.15 and
ψ : {−1, 1}N → R from Proposition 4.4.17.

Then there exists a ζ : {−1, 1}NR → R such that

— ∥ζ∥1 = 1;

— phd(ζ) = Ω(
√
N1−1/k/ ln2N);

— ∥ζ − ϕ ⋆ ψ∥1 ≤ 2/9;

— ζ(x) = 0 for all x ∈ {−1, 1}NR \HNR
≤N .

Before proving this, we state two propositions from [BKT20] that we are going to use

in the proof. The first one is about the properties of the dual block composition.

Proposition 4.4.19. [BKT20, Proposition 2.20] Let ϕ : {−1, 1}n → R, ψ : {−1, 1}m → R.
The dual block composition has the following properties.

1. If ∥ϕ∥1 = 1, ∥ψ∥1 = 1 and ⟨ψ, 12m⟩ = 0, then ∥ϕ ⋆ ψ∥1 = 1.

2. If phd(ϕ) ≥ ∆ and phd(ψ) ≥ ∆′, then phd(ϕ ⋆ ψ) ≥ ∆ ·∆′.

The second one proves the existence of the final dual polynomial ζ , that is close to the

“almost good” block composition ϕ ⋆ ψ, given that some conditions are satisfied.

Proposition 4.4.20. [BKT20, Proposition 2.22] Let R ∈ N sufficiently large and M ≤ R.
Let ϕ : {−1, 1}R → R with ∥ϕ∥1 = 1, and let ω : [M ]0 → R satisfy the (α, β)-decay
condition with some 1 ≤ α ≤ R2 and 4 ln2R/(

√
αR) ≤ β ≤ 1. Let N = ⌈20

√
α⌉R

and ψ : {−1, 1}N → R be defined as ψ(x) = ω(|x|H)/
(
N

|x|H

)
. Let ∆ < N be such that

phd(ϕ ⋆ ψ) ≥ ∆. Then there exist a∆′ ≥ β
√
αR/(4 ln2R) and a function ζ : {−1, 1}NR →

R such that

1. phd(ζ) ≥ min{∆,∆′};
2. ∥ζ − ϕ ⋆ ψ∥1 ≤ 2/9;

3. ∥ζ∥1 = 1;

4. ∀x ∈ {−1, 1}NR with |x|H > N ζ(x) = 0.

Now we can proceed with the proof of the lemma.

Proof of Lemma 4.4.18. From Proposition 4.4.17 (with T = N ), we know that ∥ψ∥1 = 1,

and that phd(ψ) ≥ c1
√
k−1N1−1/k

. From Proposition 4.4.15, we know that ∥ϕ∥1 = 1 and

phd(ϕ) ≥ 1. Using Item 1 of Proposition 4.4.19, we obtain ∥ϕ ⋆ ψ∥1 = 1, and using Item 2,

we get phd(ϕ ⋆ ψ) ≥ c1
√
k−1N1−1/k

.

From Proposition 4.4.17, we know that the function ω that is used to define ψ satisfies

the (α, β)-decay condition for some constant α = (2k)k and β = c2/
√
kN1+1/k

.

73



This way, we can use Proposition 4.4.20 to obtain the function ζ we wanted. Indeed,

our functions ψ and ϕ satisfy all the conditions of the lemma with pure high degree lower

bounded by ∆ = c1
√
k−1N1−1/k

; and with our parameters α and β we obtain ∆′ =

c2(2k)
k/2R/(4 ln2(R)

√
kN1+1/k) ∈ Ω(

√
N1−1/k/ ln2N).

For the next lemma, we will use the following proposition, which was implicitly used

in the proofs of [BKT20, Propositions 5.5 and 5.6] but not stated in this general form. By

convention, we denote D+1 = D+ and D−1 = D−.

Proposition 4.4.21. Let S ⊆ {−1, 1}NR. Let g : {−1, 1}R → {−1, 1}, h : {−1, 1}N →
{−1, 1}, ϕ : {−1, 1}R → R. Let ψ : {−1, 1}N → R be such that ∥ψ∥1 = 1 and∑

x∈{−1,1}N ψ(x) = 0. Then the following hold.

1. When λ denotes the probability mass function λ(u) = |ψ(u)|:∑
x∈S

|(ϕ ⋆ ψ)(x)| =
∑

z∈{−1,1}R
|ϕ(z)| · Pr

x∼λ⊗R
[x ∈ S|(. . . , sgn(ψ(xi)), . . . ) = z].

2. When µzii denotes the probability mass function on {−1, 1} (parameterized by zi ∈
{−1, 1}) such that µzii (−1) = 2

∑
x∈Dzi

|ψ(x)|, and µ = µz = µz11 ⊗ . . . ⊗ µzRR the
independent product distribution on {−1, 1}R:∑

x∈{−1,1}NR

(ϕ ⋆ ψ)(x) · (g ⊙ h)(x) =
∑

z∈{−1,1}R
ϕ(z) · E

y∼µ
[g(. . . , yizi, . . . )].

Proof. We will need the following claim.

Claim 4.4.22. Let λ denote the probability mass function λ(u) = |ψ(u)| for u ∈ {−1, 1}N .
Then

Pr
u∼λ

[ψ(u) > 0] = Pr
u∼λ

[ψ(u) < 0] =
1

2
.

Proof of claim. We know that

∑
u ψ(u) = 0. Thus

∑
u:ψ(u)>0 |ψ(u)| −

∑
u:ψ(u)>0 |ψ(u)|. We

then conclude using that ∥ψ∥1 = 1. ⋄

First part of Proposition 4.4.21 Below, we first apply the definition of the dual block

composition (and the fact that 2R and

∏
i∈[R] |ψ(xi)| are positive). Then we use the defini-

tion of λ which ensures that

∏
i∈[R] |ψ(xi)| is the probability of getting x = (. . . , xi, . . . )

when sampling independently R times from distribution λ.

∑
x∈S

|(ϕ ⋆ ψ)(x)| = 2R
∑

x∈{−1,1}NR

∏
i∈[R]

|ψ(xi)|

 · |ϕ(. . . , sgn(ψ(xi)), . . . )| · I[x ∈ S]

= 2R · Ex∼λ⊗R [|ϕ(. . . , sgn(ψ(xi)), . . . )| · I[x ∈ S]]

74



We introduce new variables zi that will be compared to sgn(ψ(xi)). Using Claim 4.4.22,

the probability of picking a z ∈ {−1, 1}R from the uniform distribution such that z corre-
sponds to the vector of the signs is

1
2R
. Thus, the previous term can be rewritten as

2R
∑

z∈{−1,1}R
|ϕ(z)| · Pr

x∼λ⊗R
[x ∈ S ∧ (. . . , sgn(ψ(xi)), . . . ) = z]

=
∑

z∈{−1,1}R
|ϕ(z)| · Pr

x∼λ⊗R
[x ∈ S | (. . . , sgn(ψ(xi)), . . . ) = z]

which completes the proof.

Second part of Proposition 4.4.21 Remember that λ denotes the probability mass func-

tion λ(u) = |ψ(u)| for u ∈ {−1, 1}N . Just like in the proof of the first item,∑
x∈{−1,1}NR

(ϕ ⋆ ψ)(x) · (g ⊙ h)(x)

=
∑

z∈{−1,1}R
ϕ(z) · E

x∼λ⊗R
[(g ⊙ h)(x) | (. . . , sgn(ψ(xi)), . . . ) = z] .

Using Claim 4.4.22, we can first notice that for any b ∈ {−1, 1}, the probability that an

xi sampled from λ is a false b (i.e. false positive if b = 1 and false negative if b = −1) is as
follows, where, by convention, D+1 = D+ and D−1 = D−:

Pr
xi∼λ

[
h(xi) ̸= sgn(ψ(xi)) | sgn(ψ(xi)) = b

]
=

∑
xi∈Db

Pr
xi∼λ

[
sampling xi | sgn(ψ(xi)) = b

]
= 2

∑
xi∈Db

|ψ(xi)|.

Therefore, if zi = sgn(ψ(xi)) and xi is a false zi, it means that zi should be flipped to

get h(xi). Let yi ∈ {−1, 1} denote whether we flip zi. As xi is a false zi with probability

2
∑

xi∈Dzi
|ψ(xi)|, this is the probability with which we should flip zi, i.e. the probability

that yi = −1.
Thus, for any z ∈ {−1, 1}R, the vector (. . . , h(xi), . . . ) with x ∼ λ⊗R conditioned

on (. . . , sgn(ψ(xi)), . . . ) = z is identically distributed with (. . . , ziyi, . . . ) where yi are
random bitflips according to µzii : yi = −1 with probability 2

∑
xi∈Dzi

|ψ(xi)| and yi = 1

otherwise.

Now we can finish the proof:∑
z∈{−1,1}R

ϕ(z) · E
x∼λ⊗R

[(g ⊙ h)(x) | (. . . , sgn(ψ(xi)), . . . ) = z]

=
∑

z∈{−1,1}R
ϕ(z) · E

y∼µ
[g(. . . , ziyi, . . . )].

Finally, we are ready to prove the last missing statement, which is our main technical

contribution to this part. The proof of [BKT20, Lemma 6.9] does not apply directly to this
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problem: they use the fact that the dual polynomial ψ of their inner function (OR) has one

sided error, which is not the case here.

As now we focus on the composed function f (and the dual composition ϕ ⋆ ψ), the
domain is not restricted to small Hamming weight inputs anymore.

Lemma 4.4.23. Let N = ⌈20(2k)k/2⌉R and 0 < γ < 1/4k−1. Functions ϕ from Proposi-
tion 4.4.15 and ψ from Proposition 4.4.17 satisfy∑

x∈D

(ϕ ⋆ ψ)(x) · f(x)−
∑

x∈{−1,1}NR\D

|(ϕ ⋆ ψ)(x)| ≥ 9/10.

Proof. We rewrite the left-hand side by manipulating the sets we consider in the sums, and

then we will bound separately the terms we get.∑
x∈D

(ϕ ⋆ ψ)(x) · f(x)−
∑

x∈{−1,1}NR\D

|(ϕ ⋆ ψ)(x)|

=
∑

x∈{−1,1}NR

(ϕ ⋆ ψ)(x) · (OR⊙ THRk
N)(x)

−

 ∑
x∈{−1,1}NR\D

(ϕ ⋆ ψ)(x) · (OR⊙ THRk
N)(x) +

∑
x∈{−1,1}NR\D

|(ϕ ⋆ ψ)(x)|


≥

∑
x∈{−1,1}NR

(ϕ ⋆ ψ)(x) · (OR⊙ THRk
N)(x)− 2

∑
x∈{−1,1}NR\D

|(ϕ ⋆ ψ)(x)|

We first lower bound the first term.

Claim 4.4.24. ∑
x∈{−1,1}NR

(ϕ ⋆ ψ)(x) · (OR⊙ THRk
N)(x) ≥ 1− e−

R

4k−1 − R

48N
.

Proof of claim. Using Item 2 of Proposition 4.4.21, the left-hand side can be written as∑
z∈{−1,1}R

ϕ(z) · E
y∼µ

[OR(. . . , yizi, . . . )].

Recall that ϕ(z) = 0 when z is anything but−1R or 1R, so only two terms are left to study.

If z = −1R, using Item 2 of Proposition 4.4.17, each yi is −1 with probability ≤ 1 −
1/4k−1

and 1 with probability ≥ 1/4k−1
. If there is any yi = 1, then the value of the OR is

still−1. The probability of this event is≥ 1−(1−1/4k−1)R ≥ 1−e−
R

4k−1
. So, the expected

value is≤ (−1)(1− e−
R

4k−1 )+ e−
R

4k−1 = −1+2e−
R

4k−1
. Since in this case ϕ(−1R) = −1/2,

the contribution to the sum is at most 1/2− e−
R

4k−1
.

If z = 1R, then, using Item 1 of Proposition 4.4.17, each yi is −1 with probability ≤
1/(48N). If any yi is −1, then the value of the OR becomes −1. The union bound tells us

that the probability of this is ≤ R/(48N), so the expected value is at least −R/(48N) +
1 − R/(48N) = 1 − R/(24N). Multiplied by ϕ(1R) = 1/2, the contribution is at least

1/2−R/(48N). Thus, the first term can be lower bounded by 1− e−
R

4k−1 − R
48N

. ⋄
Now we bound the second term.
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Claim 4.4.25.

2
∑

x∈{−1,1}NR\D

|(ϕ ⋆ ψ)(x)| < e−2R( 1

4k−1−γ)
2

.

Proof of claim. By Item 1 of Proposition 4.4.21 with S = {−1, 1}NR \ D, the term can be

written as follows,

2
∑

x∈{−1,1}NR\D

|(ϕ ⋆ ψ)(x)| = 2
∑

z∈{−1,1}R
|ϕ(z)| · Pr

x∼λ⊗R
[x /∈ D | (. . . , sgn(ψ(xi)), . . . ) = z],

which, using that |ϕ(z)| = 1/2 when z is −1R or 1R and 0 otherwise, collapses to

Pr
x∼λ⊗R

[x /∈ D | (. . . , sgn(ψ(xi)), . . . ) = −1R]+ Pr
x∼λ⊗R

[x /∈ D | (. . . , sgn(ψ(xi)), . . . ) = 1R].

In order to bound these two terms, we introduce 0/1-variables ri and qi, for i ∈ [R],
related to the false positive and false negative inputs. Define ri = 1 if THRk

N(xi) = −1
and sgn(ψ(xi)) = 1, and otherwise ri = 0. Similarly, qi = 1 if THRk

N(xi) = 1 and

sgn(ψ(xi)) = −1, and otherwise qi = 0.
Let us focus on the first term. If we sample xi from the conditional distribution

(λ|sgn(ψ(xi)) = 1), then

Pr[ri = 1] = Pr
[
THRk

N(xi) = −1|sgn(ψ(xi)) = 1
]
= 2

∑
xi∈D+

|ψ(xi)| ≤ 1/(24N),

where in the last step we used Item 1 of Proposition 4.4.17. Thus, we can upper bound the

probability that an input does not satisfy the promise of GapOR
γ
R (i.e. that it is not in D)

knowing that all the predictions are 1. It means that it contains at least one but less than

γR many −1s, so this many predictions are false positive, which can be expressed by the

ri variables. In the last step below, we use the union bound.

Pr
[
x /∈ D | ∀i ∈ [R] sgn(ψ(xi)) = 1

]
= Pr

1 ≤
∑
i∈[R]

ri < γR


≤ Pr

1 ≤
∑
i∈[R]

ri

 ≤ R

24N
.

Similarly, for the second term, if we sample xi from the conditional distribution

(λ|sgn(ψ(xi)) = −1), then

Pr[qi = 1] = Pr
[
THRk

N(xi) = 1|sgn(ψ(xi)) = −1
]
= 2

∑
xi∈D−

|ψ(xi)| ≤ 1− 1

4k−1
,

where in the last step we used Item 2 of Proposition 4.4.17.

Then, similarly to the first term, we can upper bound the probability. Now in the last

step we use Hoeffding’s inequality (Corollary 2.4.2), which introduces the constraint γ <
1

4k−1 .

Pr
[
x /∈ D | ∀i ∈ [R] sgn(ψ(xi)) = −1

]
≤ Pr

(1− γ)R <
∑
i∈[R]

qi

 < e−2R( 1

4k−1−γ)
2

.
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⋄

Putting together the two bounds, we obtain∑
x∈D

(ϕ ⋆ ψ)(x) · f(x)−
∑

x∈{−1,1}NR\D

|(ϕ ⋆ ψ)(x)| ≥ 1− R

16N
− e−

R

4k−1 − e−2R( 1

4k−1−γ)
2

.

When k and 1/4k−1 − γ are positive constants and R ∈ Θ(N), this is larger than 9/10 (for
large enough N ).

Finally, we can conclude the proof of Theorem 4.4.1.

Proof of Theorem 4.4.1. By Lemma 4.4.14, there is a dual polynomial for

GapORγ
R ⊙ THRk

N of pure high degree Ω(
√
N1−1/k/ ln2N), that is only supported on

HNR
≤N . By Theorem 4.4.8, this means that the double-promise δ-approximate degree of

GapORγ
R ⊙ THRk

N , with domain restricted to HNR
≤N , is Ω(

√
N1−1/k/ ln2N). Using

Lemma 4.4.10 with c = ⌈20(2k)k/2⌉, we obtain that the bounded-error quantum query

complexity of Collisionk,γ
′

N,N is Ω(
√
N1−1/k/ ln2N) if γ′ = γ/c < 1/(4k−1⌈20(2k)k/2⌉).

This implies the same lower bound on testing k-collision-freeness with ε = γ′, as

Collision is just a more restricted version of the same problem.

4.5 Testing 3-colourability

Let G = (V,E) be an undirected graph on n vertices. For positive integer k ≤ n, a k-
colouring of G is a function c : V → [k] (so it is a vertex colouring). A k-colouring is called
proper if ∀{u, v} ∈ E : c(u) ̸= c(v). In words, a k-colouring assigns one of k available

colours to each vertex of G, and in a proper colouring the two endpoints of each edge in G
have different colours. We call a graph k-colourable if it has a proper k-colouring.

In this section, we will prove that the problem of property testing 3-colourability in

bounded degree graphs remains maximally hard-to-test in the quantum setting. Our lower

bound proof will roughly follow the same approach as that of [BOT02]. See [BY22, Section

5.6] also for a reference.

Theorem 4.5.1 (Restatement of Theorem 4.1.4). Let G be an unknown undirected N -vertex
graph with maximum degree d, and ε ∈ (0, 1) be a parameter. Given quantum query access to
G in the undirected bounded-degree graph model, in order to distinguish if G is 3-colourable,
or if it is ε-far from being 3-colourable, Ω(N) quantum queries are necessary.

In order to prove the above theorem, we will first discuss the approach to proving the

classical lower bound. Then we will modify the classical proof suitably to the quantum

setting. Let us start with the notion of k-wise independent string which will be used both

in the classical and quantum lower bound proofs.

Definition 4.5.2 (k-wise independent string). Let S ⊆ {0, 1}N and let string
s = (s1, . . . , sN) ∈ {0, 1}N be chosen uniformly at random from S. The string s is said to be
k-wise independent if for any set of k-indices i1, i2 . . . , ik, the probability of any particular
assignment (bi1 , bi2 , . . . , bik) ∈ {0, 1}k to the indices i1, i2 . . . , ik is equal to 1/2k.
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4.5.1 Classical lower bound approach for testing 3-colourability

As we discussed in the technical overview, to prove the lower bound of 3-colourability,
the authors in [BOT02] studied another problem called E(3, c)LIN-2, a problem related to

deciding the satisfiability of a system of linear equations. Then the authors designed a

reduction to 3-colourability from E(3, c)LIN-2, which finally proves the linear query com-

plexity lower bound for testing 3-colourability. We will also follow a similar approach here.

Let us first formally define the problem of E(3, c)LIN-2.

Definition 4.5.3 (E(3, c)LIN-2). Let E be a system of linear equations withN variables from
F2, where there are 3 variables in each equation, and each variable occurs in at most c equa-
tions. This system E is represented as a matrix-vector pair and we have query access to their
entries. Given a parameter α ∈ (0, 1), the goal is to distinguish if E is satisfiable, or at least
an α-fraction of the equations need to be modified to make E satisfiable.

The authors in [BOT02] proved the following lemma, which states that there exists a

system of linear equations (equivalently a matrix), such that any constant fraction of the

rows of this matrix are linearly independent. The authors proved this using hypergraph

constructions.

Lemma 4.5.4 ([BOT02, Theorem 8]). For every c > 0, there exists a δ > 0 such that for
every N , there exists a matrix A ∈ {0, 1}cN×N with cN rows and N columns such that the
following conditions hold:

1. Each row of A has exactly three non-zero entries.
2. Each column of A has exactly 3c non-zero entries.
3. Every collection of δ ·N rows of A is linearly independent.

Using the existence of the matrix A corresponding to Lemma 4.5.4, the authors in

[BOT02] used Yao’s minimax principle [Yao77] to prove a linear lower bound for testing

E(3, c)LIN-2. Using this technique allows one – in some cases – to prove a lower bound

on the worst-case complexity of a probabilistic algorithm, by instead considering the best

performance of a deterministic algorithm over the hardest distribution of the inputs. For

this problem, they designed a pair of hard-to-distinguish distributions Dyes and Dno, such

that, unless Ω(N) queries are performed, no algorithm can distinguish between them. We

present this construction in the proof sketch of the following lemma.

Lemma 4.5.5. There exists a matrix A ∈ {0, 1}cN×N (similar to the matrix mentioned in
Lemma 4.5.4) such that given a parameter ε ∈ (0, 1) and query access to A and a vector
y ∈ {0, 1}cN , in order to distinguish if there exists another vector x ∈ {0, 1}N such that
Ax = y, or for any vector x ∈ {0, 1}N only a constant ε fraction of the constraints encoded
by A and y are satisfied, Ω(N) queries are necessary.

Proof sketch. As we mentioned, this proof follows Yao’s minimax lower bound technique.

A pair of hard distributions Dyes and Dno are constructed, such that, unless Ω(N) queries
are performed, no algorithm can distinguish between them.

Let us consider the matrix A ∈ {0, 1}cN×N
as mentioned in Lemma 4.5.4. Based on the

matrix A, the hard-to-distinguish distributions Dyes and Dno are as follows:

1. Dyes: Choose a vector z ∈ {0, 1}N uniformly at random from {0, 1}N , and set the

vector y ∈ {0, 1}cN as y = Az. Then the system of linear equations is Ax = y.
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2. Dno: Choose the vector y ∈ {0, 1}cN uniformly at random from {0, 1}cN , and set the
system of linear equations Ax = y.

Now we have the following claim describing the properties of Dyes and Dno.

Claim 4.5.6.

(i) The system of linear equations corresponding to Dyes is satisfiable.

(ii) With probability at least 2/3, the system of linear equations corresponding to Dno is
(1/2− α)-far from being satisfiable for every α > 0.

Note that the system of linear equations in Dyes is satisfiable by setting x = z. On the

other hand, for the system of linear equations corresponding to Dno, vector y is uniformly

random. Thus, with high probability, vectorAz−y has large Hamming weight for any z ∈
{0, 1}N , and therefore the system of linear equations Ax = y is far from being satisfiable.

The formal proof is in [BOT02, Lemma 18].

The authors in [BOT02] proved the following lower bound for testing E(3, c)LIN-2.

Lemma 4.5.7 ([BOT02, Lemma 19]). For every α > 0, there are constants c and δ > 0 such
that every algorithm that distinguishes satisfiable instances of E(3, c)LIN-2 with N variables
from instances that are (1/2 − α)-far from satisfiable must have classical query complexity
at least δN .

The key insight that is used to prove the above lemma is the following. In the case

of Dno, vector y is uniformly random. On the other hand, in the case of Dyes, applying

Lemma 4.5.4, any δN rows of A are linearly independent, thus any subset of δN entries

of y = Az will look uniformly random. Hence, y is k-wise independent with k = δN . It

remains to use the fact that it takesΩ(k) queries to distinguish a k-wise independent vector
from a uniformly random one. We will not formally prove the above lemma here, please

refer to [BOT02] for a formal proof.

Finally, we have the reduction that maps satisfying instances of testing E(3, c)LIN-2 to
satisfying instances of testing 3-colourability and vice-versa.

Lemma 4.5.8 ([BOT02, Section 4]). There exists a reduction φ that maps instances of testing
E(3, c)LIN-2 to instances of testing 3-colourability such that the following hold:

1. If an input x to E(3, c)LIN-2 is satisfiable, then φ(x) is a 3-colourable graph.

2. If an input x to E(3, c)LIN-2 is far from being satisfiable, then φ(x) is a graph that is
far from being 3-colourable.

4.5.2 Quantum lower bound for testing E(3, c)LIN-2 and

3-colourability

We will first prove the quantum lower bound for testing E(3, c)LIN-2. Our result is

stated as follows.

Lemma 4.5.9. For every α > 0, there are constants c and δ > 0, such that every algorithm
that distinguishes satisfiable instances of E(3, c)LIN-2 with N variables from instances that
are (1/2− α)-far from satisfiable must have quantum query complexity at least δN/2.
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In order to prove the above theorem, we will be using the following well-known re-

sult, which states that distinguishing between a uniformly random string and an ℓ-wise
independent string, for an appropriate integer ℓ, is hard for quantum algorithms.

Proposition 4.5.10 (see e.g. [ADW22, Fact 1]). The output distribution of a quantum al-
gorithm making q queries to a uniformly random string is identical to the same algorithm
making q queries to a 2q-wise independent string.

Now let us prove Lemma 4.5.9.

Proof of Lemma 4.5.9. Following Lemmas 4.5.4 and 4.5.5, we know that there exists a matrix

A whose δN rows are linearly independent, for which testing E(3, c)LIN-2 requires Ω(N)
classical queries. Moreover, from Proposition 4.5.10, we know that any quantum algorithm

that performs less than k/2 queries, cannot distinguish a uniformly random vector from a

k-wise independent vector. Now let us set k = δN . Combining all the above, this implies

that at least δN/2 quantum queries are necessary for testing E(3, c)LIN-2.

Now we are finally ready to prove Theorem 4.5.1.

Proof of Theorem 4.5.1. From Lemma 4.5.9, we know that the quantum query complexity

of testing E(3, c)LIN-2 is Ω(N). In order to prove similar lower bound for testing

3-colourability, we will again use a reduction approach. Given a pair of hard instances

corresponding to testing E(3, c)LIN-2, we will apply the reduction φ mentioned in

Lemma 4.5.8. Similarly to the classical setting, φ will map the yes instances of E(3, c)LIN-2
to instances of 3-colourable graphs and vice-versa. So, the quantum query lower bound of

Ω(N) carries forward from E(3, c)LIN-2 to 3-colourability. Thus, we conclude that Ω(N)
quantum queries are necessary to test 3-colourability in the bounded degree model.

4.5.3 Other maximally hard-to-test problems

As we mentioned in the introduction, there are several other problems in the bounded

degree graph model, which are maximally hard to test classically. Moreover, their lower

bounds stem from similar ideas as the E(3, c)LIN-2 and 3-colourability lower bounds, as

mentioned in [YI10a, Gol25]. Following the same path as in the previous subsection, we

also obtain Ω(N) quantum query lower bounds for all these problems. For brevity, we only

present the theorem statements below and omit their proofs.

Theorem 4.5.11 (Hamiltonian Path/Cycle). Given quantum query access to an unknown
undirected (directed) d-bounded degreeN -vertex graphG for some integer d, and a parameter
ε ∈ (0, 1), in order to distinguish if G has an undirected (directed) Hamiltonian path/cycle or
is ε-far from having an undirected (directed) Hamiltonian path/cycle, Ω(N) quantum queries
are necessary.

Theorem 4.5.12 (Approximating Independent Set/Vertex Cover size). Given query access
to an unknown undirected d-bounded degree N -vertex graph G for some integer d, and a
parameter ε ∈ (0, 1), for approximating the independent set size/vertex cover of G, Ω(N)
quantum queries are necessary.
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4.6 A maximally hard-to-test property in the dense

graph model

In this section, we are going to give a property that is maximally hard to test in the dense

graph model, even for quantum algorithms. Before proceeding to presenting our result, let

us first have a brief reminder of the model. Here a graph G = (V,E) with |V | = N is

represented as an adjacency matrix AG. The query access to AG is defined as follows: For

a pair of vertices u, v ∈ V ,

AG(u, v) =

{
1, there is an edge between vertices u and v;

0, otherwise.

A graph G is said to be ε-far from some property P for some parameter ε ∈ (0, 1), if
one needs to modify (add or remove) at least εN2

edges ofG. Modifying edges is equivalent

to changing entries of the adjacency matrix AG associated to G. Since in the dense graph

model G is represented by its adjacency matrix of size Θ(N2), any property is testable by

performing O(N2) queries.
Now we proceed to proving that there exists a property that is maximally hard to test

quantumly in the adjacencymatrixmodel. In particular, given query access to the adjacency

matrix of an unknown undirected graph G, there exists a property that requires Ω(N2)
quantum queries to test. This is an adaptation of the classical Ω(N2) lower bound from

[GKNR12, Appendix A]: we show that testing the same property is also hard in the quantum

case. Formally, our result is stated as follows.

Theorem 4.6.1. Let G be an unknown undirected dense graph on N vertices, and ε ∈ (0, 1)
be a parameter. Given quantum query access to the adjacency matrix of G, there exists a
property P such that Ω(N2) quantum queries are necessary to distinguish if G satisfies P , or
it is ε-far from satisfying P .

Let us start by describing the property considered in [GKNR12].

Property P :

LetN and n be integers such that n =
(
N
2

)
. This way, we can fix any bijection between

sets [n] and
(
[N ]
2

)
so that expressions {i, j} (for i, j ∈ [N ], i ̸= j) and ℓ ∈ [n] are inter-

changeable. Consider a subset C ⊂ {0, 1}n of size |C| = 2n/100, such that there exists some

parameter δ ∈ (0, 1), that a uniformly random X ∈ C is (δn)-wise independent. This kind
of construction exists in the literature (see e.g. [ABI86, Proof of Proposition 6.5.]) and is

based on BCH codes. Without going into details about codes, we note that membership in

set C corresponds to being a codeword of a code, and it is efficiently checkable using the

parity-check matrix.

The hard-to-test graphs are constructed in three phases based on this set C:
(i) Let us consider a Boolean string X ∈ {0, 1}n, and let us define an associated graph

G1(X) = ([N ], E1(X)), such that for any two indices i, j ∈ [N ], i ̸= j there is an
edge between vertices i and j of G1(X) if and only if the {i, j}-th bit of X is 1. The
graphG1(X) is said to be good if the corresponding stringX ∈ C, and it is said to be
bad if X /∈ C.
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(ii) Now for any a Boolean stringX ∈ {0, 1}n, we construct another graphG2(X) based
onG1(X). We first take a disjoint union ofG1(X) and a cliqueC on (2N+1) vertices,
and then we add some edges between G1(X) and C . In particular, for all i ∈ [N ], let
us add an edge between the i-th vertex ofG1(X) and each of the first i vertices of C .
We denote G2(X) = ([3N + 1], E2(X)).

(iii) Finally, since we want to obtain a graph property, we have to ensure invariance over

any permutation of the vertices. To any Boolean string X ∈ {0, 1}n, let us associate
a collection of final graphs Gfinal(X) by taking the permutation closure of G2(X).
Let S3N+1 denote the permutation group on 3N + 1 elements; then Gfinal(X) is the
following set.

Gfinal(X) = {G3(X, σ) : σ ∈ S3N+1}

Where G3(X, σ) = ([3N + 1], E3(σ)) is the graph we get from G2(X) after ap-
plying permutation σ on its vertices, i.e. an edge {i, j} ∈ E3(σ) if and only if

{σ−1(i), σ−1(j)} ∈ E2(X).

Now let us describe the hard-to-distinguish graphs.

1. Final good graph: A graph H on 3N + 1 vertices is said to be final good if there is

a string X ∈ C such that H is in the final graph set of X , i.e. H ∈ Gfinal(X).

2. Final bad graph: AgraphH is called a final bad graph if there is a stringX ∈ {0, 1}n
such that H ∈ Gfinal(X), but H is not a final good graph.

Property P is defined as the set of final good graphs.

Classical lower bound approach for testing P :

The authors in [GKNR12] used Yao’s minimax lemma [Yao77] to prove the lower bound.

Namely, they designed two distributionsDyes andDno over graphs on 3N +1 vertices. The
distributionDyes is defined by takingX ∈ C uniformly at random and performing phases (i)

and (ii) on it. On the other hand,Dno is defined by taking a uniformly randomX ∈ {0, 1}n
and then performing phases (i) and (ii) on this bitsring. Notice that Dyes is only supported

on final good graphs while Dno is supported on both final good and final bad graphs.

Then, they prove the following two lemmas:

Lemma 4.6.2 ([GKNR12, Claim 7.1]). Any graph G drawn from Dno is 0.01-far from P
with probability higher than 9/10.

Lemma 4.6.3 ([GKNR12, Claim 7.2]). Any randomised algorithm that performs o(N2)
queries cannot distinguish graphs drawn from either Dyes or Dno.

The proof of the above lemma relies on two facts. (1) If an algorithm could tell apart

graphs drawn fromDyes orDno, then it could also distinguishX ∈ C fromX ∈ {0, 1}n. (2)
Any randomised algorithm that performs at most q queries cannot distinguish between a

q-wise independent string, and a uniformly random one.

Quantum lower bound for testing P :

Proposition 4.5.10 tells us that any quantum algorithm that makes at most q queries,

cannot distinguish between a uniformly random string, and a 2q-wise independent string.
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Thus, the approach of [GKNR12] works in our context as well, the only difference in the

lower bound is a factor of 2. Therefore, we have the following lemma. The proof of this

lemma is direct and omitted.

Lemma 4.6.4. Any quantum algorithm that performs o(N2) queries cannot distinguish
graphs drawn from either Dyes or Dno.

Proof of Theorem 4.6.1. Let us consider distributionsDyes andDno described above. By con-

struction, any graph drawn fromDyes satisfiesP , and by Lemma 4.6.2, we know that a graph

drawn fromDno is far from P with very high probability. Moreover, from Lemma 4.6.4, we

can say that any graphs drawn from either Dyes and Dno are hard to distinguish. This

completes the proof of Theorem 4.6.1.
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Chapter 5

Conclusion and perspectives

This thesis investigates different quantum and classical algorithmic techniques in the

realms of approximation algorithms and property testing, with a strong emphasis on ap-

plications to topological data analysis and subgraph detection problems. Our contributions

span the design of new classical and quantum algorithms, and the establishment of quan-

tum query complexity lower bounds. At the same time, the results presented in this thesis

open up several avenues for further research.

The first contribution presented in the thesis focuses on of Betti number approximation

in simplicial complexes, a central task in topological data analysis. Prior work had estab-

lished a quantum algorithm with polynomial dependence on all key parameters, including

the number of vertices, the inverse precision and the inverse spectral gap of the normalised

combinatorial Laplacian. We provide the first efficient classical alternative under more re-

strictive assumptions. Our algorithm, based on a path integral Monte Carlo method, relies

on approximating traces of matrix powers related to the combinatorial Laplacian. Though

limited to regimes where the precision and spectral gap are constant, it serves as a use-

ful classical benchmark against which quantum speedups can be rigorously evaluated. We

also refine the analysis for clique complexes, where sparsity can be exploited to broaden

the tractable regime.

Our classical algorithm still falls short of matching quantum performance in some pa-

rameter regimes, even in the special case of clique complexes. It would be valuable to

investigate whether there exist efficient classical algorithms in this regime, or there is an

exponential quantum speedup for a certain set of parameters. Another direction of future

research could be to rigorously check if our algorithm can be used for estimating persistent

Betti numbers with similar efficiency.

In the second contribution, we explore the property testing version of Betti number es-

timation for clique complexes in the dense graph model. Here, we provide an algorithm

that distinguishes whether the k-th Betti number is near-maximal, or the complex is far

from this, with query complexity independent of the input size. This is done via a reduc-

tion to tolerant property testing of clique-freeness, using a matroidal characterisation of

independence, and the well-known graph removal lemma.

This result could potentially be generalised in several ways. Currently, parameter k is

required to be constant, and only the property of having an extremely large Betti number

over F2 is shown to be testable. Maybe one could allow larger k, and test having smaller

Betti numbers over different rings. While our results are tailored to clique complexes, real-
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world data often give rise to general simplicial complexes. It would be intriguing to explore

whether similar results are possible in this case. For this, an appropriate framework of

property testing simplicial complexes would be necessary.

The last main chapter of the thesis addresses quantum property testing of subgraph-

freeness in bounded-degree directed graphs, with a focus on the k-collision and k-star prob-
lems. We present a quantum algorithm for property testing subgraph-freeness for a large

family of directed subgraphs, generalising a prior k-collision finding technique. Comple-

menting this, we prove a quantum lower bound for property testing k-collision-freeness
using the dual polynomial method. Our work refines the polynomial construction and cor-

relation analysis, extending previous techniques to new settings. This potentially broadens

the class of problems where such lower bounds can be proved. Finally, we show that both

in the bounded-degree model and in the dense model, there exist graph problems that are

maximally hard to test.

The most obvious gap that our results leave is that the upper and lower bounds do not

match, and it would be exciting to see what the true complexity of these problems is. It

would also be interesting to see if it is possible to use less quantum memory in our algo-

rithm, in exchange for a slightly increased query complexity. The dual polynomial method

remains one of the few tools available for proving quantum lower bounds. However, it is

technically demanding and problem-specific. One key challenge is to develop more modu-

lar or automatable constructions. A general quantum version of the proportional moments

technique [RRSS09] could be one such option. Finally, because of the close connection of

the two models, we hope that some new results in the query complexity model could solve

open questions in distribution testing.
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