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Abstract

This thesis explores the power and limitations of quantum computing by developing
new classical and quantum algorithms, as well as establishing lower bounds. Along the
way, we revisit and extend existing results to new settings. We use two types of algorithmic
models: approximation algorithms and property testing.

The problems studied fall into two main categories. The first is motivated by topological
data analysis and we look at it through the lens of algebraic topology. Here, the input is a
simplicial complex, which models high-dimensional relationships in data. The objective is
to estimate the number of high-dimensional “holes” — formally, the Betti numbers, or the
ranks of the complex’s homology groups.

A prior result presented an efficient quantum algorithm for additively estimating nor-
malised high-dimensional Betti numbers. We complement this by providing a classical
benchmark: a randomised path-integral Monte Carlo algorithm. While the quantum algo-
rithm is efficient when the desired precision and the spectral gap of the combinatorial Lapla-
cian are inverse-polynomial, our randomised algorithm is efficient for a more restricted pa-
rameter regime — specifically, when the precision and the spectral gap are constant. For the
special case of clique complexes, we provide an extension of this regime.

In property testing it suffices for the algorithm to distinguish with high probability in-
puts that satisfy some property from those that are “far” (according to some distance mea-
sure and parameter) from any input that satisfies it. We also investigate a property testing
problem in topological data analysis: determining whether a clique complex has a large
Betti number (over the finite field with two elements), or is far from any such complex. We
show that a constant number of queries suffice to solve this problem for clique complexes
if the dimension and the proximity parameter are constants.

The second class of problems relates to the k-collision problem, where the goal is to
detect whether a string contains k-tuples of identical characters. We formalise this as a
property testing problem: distinguish inputs with no k-collisions from those that are far
from this property. While the classical complexity of this problem is settled, the quantum
case remained open, with only partial upper and lower bounds known in this setting.

We generalise a known quantum algorithm for the %-collision problem to a subgraph-
freeness property testing problem in the directed bounded-degree model. We then prove a
lower bound using the dual polynomial method, extending prior results to a broader set-
ting. Finally, we present some graph property testing problems, among them the testing
version of 3-colourability, and show that they have asymptotically maximal quantum query
complexity in the bounded-degree model.

Keywords: query complexity, quantum computing, algorithms, algebraic topology, topo-
logical data analysis, property testing, collision finding, dual polynomial method, bounded-
degree graphs.
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Résumeé

Titre : Test de propriétés quantique et topologie algébrique

Cette these explore la puissance et les limitations du calcul quantique en développant
de nouveaux algorithmes classiques et quantiques, ainsi qu’en établissant des bornes infé-
rieures. Au passage, nous revisitons des résultats existants et les étendons a de nouveaux
contextes. Nous utilisons deux types de modeéles algorithmiques : les algorithmes d’approxi-
mation et les tests de propriété.

Les problemes étudiés se répartissent en deux catégories principales. La premiére est
motivée par I’analyse topologique des données que nous abordons sous ’angle de la to-
pologie algébrique. Ici, I'entrée est un complexe simplicial, qui modélise des relations de
haute dimension dans les données. L’objectif est d’estimer le nombre de « trous » de haute
dimension - formellement, les nombres de Betti, ou les rangs des groupes d’homologie du
complexe.

Un algorithme quantique efficace était déja connu pour estimer de maniere additive les
nombres de Betti normalisés en haute dimension. Nous complétons ce résultat en fournis-
sant une solution classique : un algorithme probabiliste de Monte Carlo a intégrale de che-
min. Alors que 'algorithme quantique est efficace lorsque la précision souhaitée et I’écart
spectral du laplacien combinatoire sont inversement polynomiaux, notre algorithme pro-
babiliste est efficace dans un régime de parametres plus restreint — en particulier, lorsque la
précision et I’écart spectral sont constants. Pour le cas particulier des complexes de cliques,
nous proposons une extension de ce régime.

Dans les tests (probabilistes) de propriétés, il suffit que I’algorithme distingue avec une
forte probabilité les entrées qui satisfont une certaine propriété de celles qui sont « éloignées
» (selon une certaine distance et un parametre) de toute entrée quila satisfait. Nous étudions
également un probleme de test de propriété en analyse topologique de données : déterminer
si un complexe de cliques a un nombre de Betti élevé (sur le corps fini a deux éléments),
ou s’il est éloigné de tout tel complexe. Nous montrons qu'un nombre constant de requétes
suffit a résoudre ce probléme pour les complexes de cliques si la dimension et le parametre
de proximité sont constants.

La seconde classe de problémes est liée au probléme des k-collisions, ou le but est de
détecter si une chaine de caractéres contient k-uplets de caracteres identiques. Nous forma-
lisons cela comme un probléme de test de propriété : distinguer les entrées sans k-collisions
de celles qui en sont éloignées. Alors que la complexité classique de ce probleme est éta-
blie, le cas quantique restait ouvert, avec seulement des bornes inférieures et supérieures
partielles connues dans ce cadre.

Nous généralisons un algorithme quantique connu pour le probleme des k-collisions
a un probléme de test de la propriété de non-présence de sous-graphes dans le modéle
orienté a degré borné. Nous prouvons ensuite une borne inférieure en utilisant la méthode
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polynomiale duale, étendant des résultats antérieurs a un cadre plus général. Enfin, nous
présentons quelques problémes de test de propriétés de graphes, parmi lesquels la version
test de la 3-colorabilité, et montrons qu’ils ont une complexité de requéte quantique asymp-
totiquement maximale dans le modéle a degré borné.

Mots clefs : complexité en requéte, calcul quantique, algorithmes, topologie algébrique,
analyse topologique des données, test de propriété, recherche de collisions, méthode poly-
nomiale duale, graphes a degré borné.
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Résumé substantiel en francais

De nos jours, la quantité de données numériques structurées dans nos vies augmente
a un rythme effréné, ce qui rend le traitement efficace de 'information trés important. Par
exemple, 'ensemble de tous les articles scientifiques peut étre représenté comme un gigan-
tesque réseau orienté de noeuds (articles) reliés par des arétes (références entre les articles),
et on pourrait étre intéressé par trouver un article influent, c’est-a-dire un article ayant
plus d’un certain nombre de citations. Parmi les autres exemples de grands réseaux, on peut
citer le World Wide Web, les réseaux sociaux, tous les messages d’'une application de messa-
gerie, etc. Les graphes sont d'une importance capitale pour comprendre ces grands réseaux,
car ils offrent un moyen naturel de représenter et d’analyser les relations complexes au sein
des ensembles de données.

En général, lorsqu’il a acces a un objet d’entrée de taille énorme, un algorithme doit
résoudre un probleme, par exemple décider s’il satisfait a une certaine propriété. Parfois, le
simple fait de lire 'ensemble des données prendrait trop de temps. Dans ce cas, nous aime-
rions disposer d’un algorithme sous-linéaire qui résolve le probléme. Plusieurs paradigmes
différents visent a atteindre cet objectif. Une solution possible consiste a réduire la quantité
de données par échantillonnage aléatoire : en émettant certaines hypothéses sur 'entrée et
en ne considérant qu'une petite partie de celle-ci, le probleme peut dans certains cas étre
résolu avec une probabilité élevée. Une autre possibilité consiste a utiliser des phénomenes
quantiques susceptibles d’accélérer le calcul.

Vu d’un niveau élevé, dans cette these, nous examinons ’accélération de calcul que ces
techniques peuvent apporter. D’une part, cela signifie concevoir de nouveaux algorithmes
efficaces qui résolvent un probléme donné; d’autre part, prouver des bornes inférieures
montrant qu’aucun algorithme qui résout le probleme ne peut étre plus efficace que la
borne inférieure. De plus, on peut comparer lefficacité avec laquelle une tache peut étre
résolue dans différents modeles. Par exemple, I'une des questions majeures de I'informa-
tique quantique est de trouver des problémes utiles présentant un avantage quantique ex-
ponentiel, c’est-a-dire que les ordinateurs quantiques peuvent les résoudre beaucoup plus
efficacement que les machines classiques. Par conséquent, améliorer I'efficacité classique
d’un probléme comme celui-ci en proposant un nouvel algorithme est également intéres-
sant du point de vue de 'informatique quantique.

Apercu des résultats

Voici un bref apercu général des principales contributions de cette thése.
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Algorithmes classiques pour ’estimation des nombres de Betti

Approximation additive des nombres de Betti

Dans Chapitre 3, les résultats de deux articles sont présentés. Tout d’abord, sur la base
de [AGSS23], nous proposons un algorithme classique pour le probléme suivant. L’entrée
est un complexe simplicial K avec n sommets, dj, k-simplexes et le k-iéme nombre de Betti
Bk- La sortie est une estimation additive € du nombre de Betti normalisé (31, /d. Nous sup-
posons que nous avons acces a I’échantillonnage et a la requéte du complexe simplicial K
en entrée. Nous pouvons également dire qu’en temps polynomial, nous pouvons vérifier
si un ensemble de sommets est un simplexe dans K, et nous pouvons obtenir un simplexe
aléatoire d’une taille donnée.

Un élément important de notre algorithme est une matrice / liée au Laplacien combina-
toire du complexe K. Nous montrons que la trace normalisée d’une puissance suffisamment
élevée de H donne une estimation du k-iéme nombre de Betti normalisé. Nous estimons en-
suite cette trace normalisée en remarquant qu’elle correspond a I'espérance d’une variable
aléatoire qui peut étre calculée par un processus de Monte Carlo.

Intuitivement, nous partons d’un simplexe aléatoire de K et effectuons une marche aléa-
toire sur les simplexes de K avec des probabilités de transition correspondant aux entrées
de H. En utilisant une borne de concentration standard, nous pouvons estimer le nombre
de fois ou nous devons répéter ce processus afin d’obtenir une approximation suffisamment
bonne du k-iéme nombre de Betti normalisé.

La complexité de cet algorithme de base peut étre légerement améliorée en utilisant les
polynémes de Chebyshev pour estimer la puissance de H. De plus, dans le cas particulier
ou K est un complexe clique, nous pouvons montrer que [ est plus creuse qu’en général,
ce qui réduit le nombre de répétitions nécessaires pour obtenir ’estimation souhaitée.

On savait déja avant nos travaux que les algorithmes quantiques peuvent résoudre cette
tache efficacement, méme pour de grandes valeurs de %, mais aucun algorithme classique
efficace n’était connu dans ce régime. Plus précisément, la complexité temporelle de 1’al-
gorithme quantique de [LGZ16] est polynomiale en n, 1/c et 1/, ol n est le nombre de
sommets, ¢ est le parametre de précision additive et -y est I’écart spectral du Laplacien com-
binatoire.

De cette maniere, notre algorithme sert de référence classique pour les algorithmes
quantiques, car il montre que le probléme peut étre résolu en temps polynomial méme de
maniére classique, bien que pour un ensemble de parameétres plus restreint que dans le cas
quantique. En particulier, pour les complexes simpliciaux généraux, notre algorithme fonc-
tionne en temps polynomial si € et v sont des constantes. Dans le cas particulier des com-
plexes de cliques, nous obtenons un résultat légérement amélioré : par exemple, si k € 2(n)
et v est une constante, alors € peut étre inversement polynomial en n.

Test de propriété des tres grands nombres de Betti

Dans le méme chapitre, sur la base d’'un autre article [SA25], nous examinons ’ho-
mologie simpliciale dans le cadre du test de propriétés. Ayant acceés au graphe sous-jacent
d’un complexe de cliques, I’algorithme doit distinguer si ) est proche du maximum pos-
sible ou si I'entrée est a une distance ¢ de celui-ci. Nous montrons que la complexité de
requéte de cette tache dépend uniquement du parametre de proximité e, c’est-a-dire qu’elle



est indépendante de la taille de entrée.

Nous utilisons une notion d’indépendance des k-simplexes qui provient de la théorie des
matroides, et nous désignons le nombre maximal de £-simplexes indépendants par ;. Nous
prouvons que 7 ne peut pas étre beaucoup plus petit que le nombre total de k-simplexes
dy. De plus, cette notion permet d’obtenir une expression élégante de () qui inclut les pa-
rameétres dj, 7 et rp_q.

Nous prouvons ensuite notre résultat, d’abord dans le cas particulier de £ = 0, puis
de maniere générale. Les preuves utilisent les formules mentionnées précédemment pour
montrer qu'un nombre de Betti k trés élevé signifie peu de (k + 1)-simplexes indépendants,
ce qui signifie également peu de (k + 1)-simplexes au total. Dans un complexe clique, un
simplexe (k+1) est une (k+2)-clique, donc dans ce cas, le graphe est proche de ne contenir
aucune (k + 2)-clique. De plus, nous pouvons montrer qu’étre loin d’avoir un grand [
implique étre loin de ne contenir aucune (k + 2)-clique. De cette maniére, nous réduisons
notre probleme au test de propriété tolérant de ’absence de cliques de taille (k + 2). On sait
que la complexité des requétes ne dépend que des parameétres de proximité, en utilisant des
résultats bien connus [Fiir95, FN07].

Test de propriétés quantiques

Nos travaux présentés dans Chapitre 4 s’appuient sur [AMSS25] et lancent I'étude du
test de propriétés quantiques des graphes orientés dans le modeéle a degré borné, ou l’al-
gorithme a acces a la liste d’adjacence des arétes sortantes des sommets du graphe. Nous
considérons un probléme de test d’absence de sous-graphes qui est une généralisation de
I'absence de k-étoiles pour une constante k. Une k-étoile est un graphe avec (k + 1) som-
mets : un sommet central et £ sommets extérieurs, et il existe une aréte de chaque sommet
extérieur vers le sommet central.

Nous rappelons 'exemple donné au début de ce résumé, ou des articles scientifiques se
réferent les uns aux autres. Cela correspond a ce modéle : lorsque nous lisons un article,
nous ne voyons que les articles qu’il cite, mais nous voulons trouver un article qui est cité
par de nombreux (k) autres, ce qui correspond exactement a une k-étoile.

Nous relions le probleme de 1’absence de sous-graphes au probleme de k-collision de
plusieurs manieres. Tout d’abord, nous proposons un algorithme pour notre probleme d’ab-
sence de sous-graphes en généralisant I’algorithme de recherche de k-collisions de [LZ19]
aux graphes. De plus, nous devons prouver que cette approche fonctionne dans le contexte
du test de propriété. En particulier, ils supposent que leur entrée contient de nombreuses
k-collisions, mais nous devons prouver qu’'une entrée qui est loin d’étre sans sous-graphes
contient de nombreux sous-graphes qui sont disjoints dans un certain sens approprié.

Intuitivement, pour le cas particulier des k-étoiles, notre algorithme échantillonne
d’abord certains sommets et interroge leurs voisins. Ensuite, la recherche de Grover est
utilisée pour rechercher d’autres sommets qui ont un voisin déja interrogé dans leur
voisinage, ce qui permet de trouver plusieurs étoiles a 2 branches. Grace a des recherches
de Grover itérées, certaines de ces étoiles deviennent de plus en plus grandes jusqu’a ce
qu’une k-étoile soit trouvée.

Pour la borne inférieure, nous donnons une réduction simple du test de propriété de
I’absence de k-collisions au probleme de ’absence de k-étoiles. De cette facon, il suffit de
donner une borne inférieure au premier probléme, ou méme a un cas particulier de celui-

x1



ci. En particulier, nous considérons le probléme ou il faut distinguer entre ’absence de
k-collisions et de nombreuses valeurs distinctes ou une k-collision se produit. Ce probleme
peut étre facilement formulé comme une composition de fonctions booléennes simples (une
version promesse de OU et la fonction seuil) si nous utilisons un encodage binaire approprié
de I'entrée.

La méthode de borne inférieure que nous utilisons est appelée méthode polynomiale
duale, dans laquelle il faut fournir un polynéme - que nous appelons le polynéme dual - qui
certifie que tout algorithme quantique doit effectuer de nombreuses requétes pour résoudre
le probléme. Pour certaines fonctions de base, il existe des polyndmes duals connus, et il
existe également des moyens de créer un polynéme dual potentiel pour une composition
de ces fonctions simples. C’est pourquoi il est important d’envisager une version de notre
probléeme que nous pouvons formuler ainsi.

La difficulté réside dans le fait que le polyndme que nous obtenons en utilisant ces
éléments constitutifs n’est pas encore un bon polynéme dual, car il ne satisfait pas a I'une
des contraintes qu’il devrait satisfaire. De plus, le respect d’'une autre contrainte, appelée
corrélation élevée, n’est pas assuré par la construction, il faut le prouver. Nous utilisons un
résultat de [BKT20] qui résout le premier probleme, il ne reste donc plus qu’a prouver la
corrélation élevée, qui est la partie la plus technique de Chapitre 4.

Nous ne pouvons pas simplement adapter la preuve d’'un autre probleme de test de
propriété de [BKT20], car elle utilise une propriété d’erreur unilatérale de leur fonction,
que notre fonction ne satisfait pas. Nous espérons que la maniére dont nous surmontons
ce probléme aidera les recherches futures a prouver des bornes inférieures pour d’autres
problémes, voire a obtenir une méthode de borne inférieure plus générale et plus facile a
utiliser que la méthode polynomiale duale.

Enfin, nous montrons qu’il existe des propriétés de graphes, a la fois dans le modéle a
degré limité et dans le modeéle dense, qui ont une complexité de requéte quantique essentiel-
lement maximale. Ces deux contributions sont des adaptations de résultats similaires dans
le cadre classique, et elles reposent sur la difficulté de distinguer les séquences uniformes
des séquences « indépendantes £ a k ».

xii



Chapter 1

Introduction

1.1 Context

Nowadays, the amount of structured digital data in our lives grows at an exceeding rate
which makes efficient information processing very important. For example, the ensemble
of all the scientific articles can be represented as a gigantic, directed network of nodes
(articles) connected by edges (references between the articles), and one could be interested
in finding an influential article, i.e. one with more than a certain number of citations. Other
examples of large networks include the world wide web, social networks, all the messages
in a messaging application, etc. Graphs are of paramount importance, when it comes to
understanding large networks like these, since they provide a natural way to represent and
analyse complex relationships inside datasets.

In general, having access to an input object of huge size, an algorithm has to solve a
problem, for example to decide whether it satisfies some property. Sometimes even merely
reading the whole data would require too much time, in this case we would like to have a
sublinear algorithm that solves the problem. Several different paradigms aim at achieving
this. One possible way is to decrease the amount of data via random sampling: by making
some assumption about the input and only looking at a small part of it, in some cases the
problem can still be solved with high probability. Another possibility is to use quantum
phenomena that can potentially speed up the computation.

On a high level, in this thesis we examine the computational speedup these techniques
can provide. On the one hand this means designing new, efficient algorithms that solve a
given problem; and on the other hand, proving lower bounds showing that no algorithm
that solves the problem can be more efficient than the lower bound. Moreover, one can
compare how efficiently a task can be solved in different models. For example, it is a major
question in quantum computing to find useful problems with an exponential quantum ad-
vantage, meaning that a quantum computer can solve them much more efficiently than a
classical machine. Hence, improving the classical efficiency of a problem like this by giving
a new algorithm is also interesting from the quantum computing perspective.

In the following, let us look at the basic models and historical background of some
relevant fields.



1.1.1 Classical computing and query complexity

Classical computing

The theory of computing dates back to the 1930s and the work of Kurt Gédel, Alonzo
Church, Alan Turing and others. In particular, Turing introduced one of the most common
computational models, that we now call the Turing machine [Tur37].

Turing machines are important because in a way they formalise what we can call a com-
putational process or an algorithm. Moreover, according to the extended Church-Turing
thesis, efficient computations correspond to efficient Turing machines. By this we mean
that the amount of time (number of elementary steps) and space (memory) necessary for
executing the computation are approximately the same in different models. From now on
we will talk about algorithms.

A deterministic algorithm’s actions at any step are determined by its internal state and
the input. In addition to this, a probabilistic (or randomised) algorithm also has access to
some randomness which can be thought of as a coin that it can toss. The machine’s actions
can also depend on the outcome of this randomness, and in this model, it usually suffices to
succeed with probability 2/3. A third model is nondeterministic algorithms that can make
different actions in parallel, and it suffices if any of these computations succeed.

In complexity theory, an algorithm usually solves a decision problem, meaning that it
receives an input from a universe = € U, and it has to output a bit representing whether
x satisfies some property, i.e. whether x € P for some subset P C U. Function problems,
where the task is to output something more complex than a bit, can often be reduced to
decision problems with little overhead in the complexity. The time (resp. space) complexity
of a decision problem on input x is the number of elementary steps (bits of memory) the best
possible algorithm makes (uses) in order to decide whether the input satisfies the property.
In the following we focus on time complexity.

The time complexity of a problem usually highly depends on the length of the input, for
example deciding if the word “quantum” appears in the title of this thesis takes much less
time than searching for it in the Bible. This is why time complexity is usually expressed
as a function of the input length, where the length is usually denoted by n (or N), and the
time complexity by T'(n). This way, the time complexity T'(n) of a decision problem on
inputs of length 7 is the number of elementary steps the algorithm needs to make in order
to decide for any input of length n whether it satisfies the property.

Moreover, constant factors are usually omitted, and only the order or growth rate of
T'(n) is considered, which results in using the asymptotic notations O, €2, O, 0, w. For ex-
ample, if T'(n) < 4n?4-2n—>5thenwe say T'(n) € O(n?); andif T'(n) > 2/n—n'/?—1then
we say T'(n) € Q(y/n). In this model, a computation is usually considered to be efficient if
its time complexity is at most some polynomial function of the input length.

Query complexity

Query complexity is a model of computation where the input is not given to the algo-
rithm explicitly, but as a “black box”, and the algorithm has to make queries in order to
gain information about it. This is also called oracle access: in each query the algorithm
asks “What is the i-th character of the input?”, and the oracle provides the corresponding
character. The cost of the algorithm is the number of queries it makes for deciding whether



the input satisfies a given property.

For example, let the input be a sequence of bits z = 001010 that the algorithm does
not know, but it has access to the query operator O,. When querying index 2, the query
operator returns the second bit of z: O0,(2) = x5 = 0. An example of a property is the
OR function, i.e. the set of inputs having at least a 1-bit. In this case, query complexity
measures the number of queries necessary (lower bound) or sufficient (upper bound) to
decide if any input sequence has at least a 1-bit.

A query algorithm corresponds to a decision tree: the first query it makes is the root
of the tree and the possible outcomes of the query correspond to the edges incident to
this node. Based on the outcome, and on some randomness in the case of a probabilistic
algorithm, another query can be made, which corresponds to the node at the other end of
the edge of the first query, and so on.

Similarly to time complexity, query complexity is usually parameterised by the input
length n: it is the number of queries necessary to solve the problem on any input of length
n. Query complexity can be associated with sublinear algorithms because making n queries
to an input of length n is trivially sufficient: in n queries the algorithm can learn the whole
input and it does not need to make any further queries. Thus, query complexity is interest-
ing when it is sublinear, i.e. o(n).

Query complexity provides a natural model of several scenarios, for example when the
input is stored on the server of a company. More generally, if the algorithm has restricted
access to a large, distant object, then it would take a lot of time or money to obtain the
whole of it. Then it is a reasonable goal to minimise the number of queries, or the amount
of information needed for the algorithm.

Compared to time complexity, this model is useful because it makes it possible to prove
lower bounds on the complexity of many problems. A lower bound f(n) on the query
complexity of a problem means showing that for any algorithm there is an input of length
n such that the algorithm needs to make at least f(n) queries to solve the problem on this
input. Lower bounds are important because they make it possible to know the exact query
complexity of a problem, otherwise we would only know upper bounds on them. This way
it is possible to show that an algorithm for a problem is essentially query optimal, i.e. there
cannot exist a more efficient way of solving it.

For example, it is in the query complexity model that one can show a lower bound on
the problem of sorting, using a comparison oracle. In particular, we have n elements, and
the way we can access them is to query pairs of elements and learn their relative order.
In this model, one can show that sorting the n elements takes €2(nlogn) queries (while
there are (g) element pairs). The well-known merge sort algorithm runs using O(nlogn)
comparisons, so it is essentially optimal.

1.1.2 Property testing

Instead of total decision problems, where the algorithm has to decide whether the input
satisfies a property or not, one can consider partial decision problems or promise problems,
where the algorithm can assume that the inputs it receives satisfy some promise. This
way, the task becomes easier: instead of partitioning the whole input space to yes and no
instances, it has to do so only for a subset of the input space. This means that there is no
guarantee on the algorithm’s output for inputs that do not satisfy the promise. Promise



problems were introduced in [ESY84].

An important setting where using query complexity is natural, is property testing. It
focuses on designing ultrafast algorithms (also known as testers) that read only a small
part of the input and distinguish inputs that satisfy some property from inputs that are “c-
far” from satisfying it for some distance measure and parameter ¢ € (0, 1), that is usually
considered to be constant. Notice that this is a promise problem: the inputs are promised
to either satisfy the property or be far from it. This field was initiated in the work of
[BK89] where the authors designed testers for checking the output of programs. Later,
several works considered this verification or self-testing aspect of property testing, see
[BLR90, EKK*98] and the references therein.

As a possible use-case, when the exact computation is expensive, one can use prop-
erty testing algorithms as a precursor to running the final algorithm. If the input does not
pass the property testing test, we can safely reject it, without running the expensive final
computation. Alternatively, property testing algorithms can be seen as approximation al-
gorithms for decision problems: instead of outputting an approximately correct value, it
makes a decision that is correct at least for some object that is close to the input. A third
motivation is that if a property testing algorithm usually makes the right decision, then it
is a heuristic with an additional provable guarantee, because we know that for some inputs
it is going to succeed with high probability.

Goldreich, Goldwasser, and Ron [GGR98] were the first to consider graphs in the context
of property testing. Formally, given some form of query access to an unknown graph GG on
N vertices, and a property P of interest, the goal is to distinguish with high probability
if G satisfies the property P, or whether it is far from all graphs that satisfy P, with a
suitable notion of farness. In [GGR98] the “dense” graph model was considered, where a
graph is accessed through adjacency matrix queries: querying a pair of vertices (u, v) reveals
whether v and v are linked by an edge in the graph. In this model, a graph G is e-far from
satisfying P if one needs to add or remove at least e N2 edges of G to obtain a graph that
satisfies P.

Interestingly, there are some problems that are notoriously hard if we want to solve
them exactly, but their property testing version in the dense graph model is surprisingly
easy. For example, deciding if a graph contains a Hamiltonian cycle is not expected to be
solvable in polynomial time. But the property testing version is trivial, since from any N-
vertex graph, by adding at most /V edges, we can obtain a graph with a Hamiltonian cycle,
thus in the dense graph model any graph is 1/N-close to being Hamiltonian. Another
example is 3-colourability, that is also difficult to solve exactly, but for property testing in
the dense graph model, it suffices to sample O(1/?) vertices and check if the corresponding
induced subgraph is 3-colourable [GGR98].

In a later work, Goldreich and Ron [GR02] introduced the “bounded-degree” model for
testing sparse graphs, focusing on the properties of bipartiteness and expansion. In this
model, a d-bounded degree graph GG with N vertices is accessed by performing adjacency
list queries: for a vertex v and an integer i € [d], the query (v, ) returns either the i-th
neighbour of v, or some special symbol if v has less than 7 neighbours. The graph G is said to
be e-far from some property P, if one needs to add or delete at least cd/V edges of G to obtain
a graph that satisfies P. Over the last two decades, there has been a significant number of
works in this model, and we refer the interested reader to the books by Goldreich [Gol17]
and Bhattacharyya and Yoshida [BY22] and several surveys [Fis01, Ron10, CS10, RS11].

4



There is a version of property testing, where instead of distinguishing inputs that satisfy
the property from those that are e-far, the task is to distinguish inputs that are ¢’-close vs
e-far from the property, where ¢’ < . This is called tolerant property testing and it is closely
related to distance approximation [PRRO06]. It is clearly a generalisation of usual property
testing since setting ¢’ = 0 yields the usual, non-tolerant version.

1.1.3 Quantum computing

The history of quantum computing began in the 1980s with the works of Yuri Manin,
Paul Benioff and Richard Feynman [Man80, Ben80, Fey82]. The theoretical model is the
quantum version of the Turing machine introduced by Benioff [Ben80]. The idea was fur-
ther developed by David Deutsch [Deu85], who also suggested another model, based on
quantum gates, similarly to classical logic gates in circuits.

Quantum computers use quantum phenomena to perform computation in superposi-
tion. This makes the model somewhat similar to the classical models of probabilistic (ran-
domised) and nondeterministic computing. Quantum computing is more powerful than
probabilistic computing, meaning that for every randomised algorithm there exists a quan-
tum algorithm that solves the same task in the same complexity. Quantum and nondeter-
ministic computing are incomparable.

The field of quantum computing has significantly influenced many computer science
paradigms, including cryptography, algorithms, and large-scale data processing. This new
perspective on computer science, based on quantum physics, has sparked many fresh re-
search directions. This includes the topic of this thesis, which combines quantum comput-
ing, property testing and algebraic topology.

One of the fascinating aspects of quantum computing is that is permits to have sublinear
algorithms in cases where classically it is not possible. For example, a classical algorithm
looking for a “marked” element is a database of size n needs €2(n) time to find it. For
a quantum computer, solving this task only takes O(y/n) time, using the famous Grover
search algorithm [Gro96].

Let us recall that in classical query complexity, the algorithm has access to the input
via the query operator O,. This operator can be modified to make it fit for dealing with
quantum algorithms that can make queries in superposition. In this case, we obtain the no-
tion of quantum query complexity. Similarly to its classical counterpart, this model is useful
because it makes it possible to prove lower bounds on the complexity of many problems.

Lower bounds are important if we want to prove separations between different models.
For example, Shor’s celebrated quantum algorithm solves integer factorisation in polyno-
mial time [Sho94], but no polynomial time classical algorithm is known for this problem.
However, no classical lower bound is known either, that would prove that any classical
algorithm needs more than polynomial time. Thus, for this extremely important problem,
the superpolynomial separation between classical and quantum algorithms is not proved,
it is only according to the current state of the art.

But there are other problems where similar separations between classical and quantum
algorithms are proved. One of the first examples of an exponential quantum advantage is
the Deutsch-Jozsa algorithm [D]92], where we are given query access to a Boolean function
f:{0,1}" — {0, 1} with the promise that it is either constant (takes the same value for
any input) or balanced (takes value 0 on half of the domain and 1 on the other half). The



algorithm has to decide exactly (with error probability 0) which one is the case. Classically
this clearly takes 2" ! + 1 queries, but the Deutsch-Jozsa quantum algorithm solves the
task with a single query.

A similar result exists in the bounded-error case. Given query access to a function
f:{0,1}" — {0, 1} that is promised to satisfy f(z) = z - s for a hidden s € {0,1}", find
5. The Bernstein-Vazirani quantum algorithm solves this task exactly with a single query
[BV97]. However, it can be shown that any bounded-error randomised algorithm needs to
make ()(n) queries.

1.1.4 Topological data analysis

Recently, there has been an increasing interest in using simplicial complexes to model
higher-order relations in data sets — a technique often called topological data analysis
(TDA) [Car09]. One of the reasons for this is that it seems to be useful: it has found
applications in several domains, like in machine learning or in the analysis of images and
networks, that can be used for example in oncology and cosmology [BAD21, PEv'16].
Another reason is that it appears to be a candidate for a natural, useful task that could
admit an exponential quantum advantage in some cases.

Simplicial complexes are set families that are closed under the subset relation. They can
alternatively be viewed as hypergraphs with the additional constraint that if a hyperedge is
in the hypergraph then all its subsets are there too. A special case of simplicial complexes
is clique complexes, that are defined by a graph: each clique of the graph is a set in the
complex. A set of size (k + 1) that is in the complex, is called a k-face or a k-simplex.

In order to robustly classify data, a feature of particular importance is the rank of the
homology groups, called the Betti numbers of the simplicial complex, which intuitively char-
acterise the number of high-dimensional holes. This theory is called simplicial homology,
which belongs to the broader branch of algebraic topology. In particular, the so-called
persistent Betti numbers have been useful for applications because they capture a scale-
independent global property of the data set [PEv*16, KMH"21, BAD21].

In a recent paper, the authors showed that it is QMA1-hard to compute Betti numbers,
or to estimate them with relative error, even in the special case of clique complexes [CK24].
This is why the focus has been on the additive approximation of the (normalised) Betti
numbers. In [LGZ16] the authors proposed a quantum algorithm that solves this problem
in polynomial time for a set of parameters: the runtime is poly(n, 1/7, 1/¢) where n is the
number of vertices, ¢ is the additive precision and 7 is the (normalised) spectral gap of the
so-called combinatorial Laplacian of the complex. So far, most applications need the exact
computation of low dimensional Betti numbers, hence the estimation of high dimensional
ones was not in the focus. This is why the LGZ algorithm was somewhat unfairly compared
to classical algorithms for Betti number computation (rather than estimation), which take
time exponential in the dimension k. This suggested that there could be an exponential
quantum advantage for this natural, useful task.

1.1.5 Collision finding and related problems

Collision finding is a ubiquitous problem in the field of algorithm theory with many
applications in cryptography, algorithms, statistics etc. Here we are given a list of bounded



integers s = (s1,...,sy) € [R]" and the task is to find a pair i # j such that s; = s;.
For example, collision resistance is an important property of cryptographic hash functions,
that have numerous information-security applications. Collision resistance means that on
a “good” hash function it is difficult to solve the collision finding problem (if we represent
the hash function as a list of integers).

This original version of the problem is well-understood both classically and quantumly:
the classical query complexity of the collision problem is ©(y/n) by the birthday paradox;
and its quantum query complexity is ©(n'/?) by the BHT algorithm [BHT98] and the lower
bound of Aaronson and Shi [AS04].

However, there are some modified or generalised versions that need further research.
For example, we can consider k-collisions, where in the list of integers s = (s1,...,sx) €
[R]"Y we want to find a k-tuple i1, ...,i; such that s;, = s;.. Classically, it was shown
that the query complexity of this problem is ©(n'~'/¥) [HS12, PW23]. The quantum query
complexity is only settled in the special case where the input is a random string of integers,

and then the complexity is © (né (1_2’@11>> [LZ19].

Instead of finding, we can consider a decision version of this problem, where the algo-
rithm has to distinguish with high probability inputs that contain at least eV collision pairs
from those that do not contain any. This version could potentially be simpler to solve, but
the classical lower bound [PW23] and the quantum lower bound for the £ = 2 case [AS04]
were actually proved for the decision version. One of our goals in this thesis is to give a
lower bound for this version in the quantum setting for general k.

This version of the problem can be further generalised to graphs and it can be consid-
ered in the context of property testing. In fact, in [HS12] the authors gave an algorithm
for this more general, subgraph-freeness testing problem. For proving their lower bound
on the decision version of the k-collision problem, [PW23] used the proportional moments
technique of [RRSS09]. Then they gave reductions to obtain lower bounds on the general
subgraph-freeness property testing problem in bounded-degree directed graphs. This suc-
cessful lower bound technique of [RRSS09] has no quantum analogue yet, and a future goal
of ours is to extend it to this setting.

1.2 Overview of the results

Let us provide a short, high-level overview of the main contributions of this thesis.

1.2.1 Classical algorithms for Betti number estimation

Additive approximation of Betti numbers

In Chapter 3, the results of two articles are presented. First, based on [AGSS23], we
give a classical algorithm for the following problem. The input is a simplicial complex K
with n vertices, d;, many k-simplices and k-th Betti number ). The output is an e-additive
estimate of the normalised Betti number [ /d;. We assume we have sampling and query
access to the input simplicial complex /. We can alternatively say that in polynomial time
we can check for a set of vertices if it is a simplex in /{, and we can obtain a random simplex
of a given size.



An important element of our algorithm is a matrix H related to the so-called combina-
torial Laplacian of the complex K. We show that the normalised trace of a high enough
power of H gives an estimate of the k-th normalised Betti number. Then we estimate this
normalised trace by noticing that it corresponds to the expectation of a random variable
that can be calculated by a Monte Carlo process.

Intuitively, we start from a random k-simplex of K and do a random walk over the
k-simplices of K with transition probabilities corresponding to the entries of H. Using a
standard concentration bound, we can upper bound the number of times we have to repeat
this process in order to obtain a good enough approximation of the k-th normalised Betti
number.

The complexity of this basic algorithm can be slightly improved by using Chebyshev
polynomials to estimate the power of H. Moreover, for the special case where K is a clique
complex, we can show that H is sparser than in general, which reduces the number of
repetitions necessary for obtaining the desired estimation.

It was already known before our work that quantum algorithms can solve this task
efficiently, even for large k, but no efficient classical algorithm was known in this regime.
More precisely, the time complexity of the quantum algorithm of [LGZ16] is polynomial in
n, 1/e and 1/, where n is the number of vertices, ¢ is the additive precision parameter and
7y is the spectral gap of the combinatorial Laplacian.

This way, our algorithm serves as a classical benchmark of quantum ones, because it
shows that the problem can be solved in polynomial time even classically, although for
a more restricted set of parameters than in the quantum case. In particular, for general
simplicial complexes our algorithm runs in polynomial time if € and  are constants. In
the special case of clique complexes, we have a slightly improved result: for instance, if
k € ©(n) and 7 is constant, then we can allow ¢ to be inverse polynomial in 7.

Property testing very large Betti numbers

In the same chapter, based on another article [SA25], we examine simplicial homology
in the setting of property testing. Having query access to the underlying graph of a clique
complex, the algorithm has to distinguish if ) is nearly the maximum possible, or the
input is e-far from this. We show that the query complexity of this task depends only on
the proximity parameter ¢, i.e. it is independent of the input size.

We use a notion of independence of k-simplices that comes from matroid theory, and
we denote the maximum number of independent k-simplices as 1. We prove that r; cannot
be much smaller than the total number of k-simplices d;. Moreover, with this notion it is
possible to have an elegant expression of 3, that includes dy, 7 and 7j_;.

Then we prove our result, first in the special case of £ = 0, and then in general. The
proofs use the previously mentioned formulas to show that a very large k-th Betti number
means few independent (k + 1)-simplices, which also means few (k + 1)-simplices in total.
In a clique complex a (k + 1)-simplex is a (k + 2)-clique, so in this case the graph is close
to not containing any (k + 2)-cliques. Also, we can show that being far from having a
large () implies being far from not containing any (k + 2)-cliques. This way, we reduce
our problem to the tolerant property testing of (k + 2)-clique-freeness. This is known to
have query complexity that only depends on the proximity parameters, using well-known
results [Fur95, FN07].



1.2.2 Quantum property testing

Our work presented in Chapter 4 is based on [AMSS25], and it initiates the study of
quantum property testing of directed graphs in the bounded degree model, where the algo-
rithm has query access to the adjacency list of the outgoing edges of the graph’s vertices.
We consider a subgraph-freeness testing problem that is a generalisation of k-star-freeness
for constant k. A k-star is a graph with (k + 1) vertices: one centre vertex and k outer
vertices, and there is an edge from each outer vertex to the centre.

We recall the example at the beginning of this introduction, where scientific articles
refer to each other. This fits into this model: when reading an article, we only see the
articles it cites, but we want to find an article that is cited by many (k) others, which is
exactly a k-star.

We connect the subgraph-freeness problem to the k-collision problem in multiple
ways. First, we give an algorithm for our subgraph-freeness problem by generalising the
k-collision finding algorithm of [LZ19] to graphs. Moreover, we need to prove that this
approach works in the property testing context. In particular, they assume that their input
contains many k-collisions, but we have to prove that an input that is far from
subgraph-freeness, contains many subgraphs that are disjoint in some appropriate sense.

Intuitively, for the special case of k-stars, our algorithm first samples some vertices and
queries their neighbours. Then Grover search is used to look for other vertices that have
an already queried neighbour in their neighbourhood, and thus several 2-stars are found.
With iterated Grover searches, some of these stars grow into larger and larger stars until
one k-star is found.

For the lower bound, we give a simple reduction from the property testing of k-collision-
freeness to the k-star-freeness problem. This way, it suffices to give a lower bound on
the former problem, or even a special case of it. In particular, we consider the problem
where one has to distinguish between no k-collisions and many distinct values where a k-
collision occurs. This problem can be easily formulated as a composition of simple Boolean
functions (a promise version of OR and the threshold function) if we use an appropriate
binary encoding of the input.

The lower bound method we use is called the dual polynomial method, where one needs
to provide a polynomial - that we call the dual polynomial - that certifies that any quan-
tum algorithm needs to make many queries in order to solve the problem. For some basic
functions there exist known dual polynomials, and there are also some ways to create a
potential dual polynomial for a composition of these simple functions. This is why it is
important to consider a version of our problem that we can formulate like this.

The difficulty is that the polynomial we obtain by using these building blocks, is not yet a
good dual polynomial, because it does not satisfy one of the constraints it should. Moreover,
satisfying another constraint, called high correlation, is not provided by the construction,
one needs to prove it. We use a result from [BKT20] which fixes the first issue, so the
only remaining task is to prove the high correlation, which is the most technical part of
Chapter 4.

We cannot simply adapt the proof of another property testing problem from [BKT20],
because it uses a one-sided error property of their function, that our function does not
satisfy. We hope that the way we overcome this issue is going to help future research to
prove lower bounds for other problems, or even to obtain a more general lower bound
method that is easier to use than the dual polynomial method.



Finally, we show that there are graph properties, both in the bounded degree and in
the dense model, that have essentially maximal quantum query complexity. Both these
contributions are adaptations of similar results in the classical setting, and they rely on the
hardness of distinguishing uniform sequences from “k-wise independent” ones.
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Chapter 2

Preliminaries

In this chapter we introduce some notations, models and results that we will use
throughout the thesis. In later chapters we will remind the reader of some of these before
using them.

2.1 Notations and basic definitions

Let us denote [n] = {1,...,n} and [n]p = {0,...,n}. Let N,Z,Q, R, C respectively
denote the set of nonnegative integers, integers, rational numbers, real numbers and com-
plex numbers. Moreover, for any prime number p let IF, denote the finite field of integers
modulo p.

For a set S, its size (cardinality) or the number of its elements is denoted by |S|. The
power set of S (i.e. the set family of all subsets of S) is denoted by 2°. For any nonnegative
integer k < | S|, the set family of all the size-k subsets of S is denoted by (i) Note that the

size of set family (‘,Z) is exactly the usual binomial coefficient (f'), and the size of 25 is 2/,

If we allow repetitions (but the order does still not count), we get multisets, and the
set of size-k multisets with elements from S is denoted by ((i )) The size of this set is

((li‘» = (ISHkk*l), also known as the multiset coefficient or the number of k-element

combinations of |.S| objects with repetition.

A string (of characters) is some x € X" where ¥ is the alphabet and n is the length of .
In the special case of bitstrings, > = {0, 1}. The Hamming weight of a bitstring z € {0, 1}"
is |x|g = |{i € [n] : z; = 1}, i.e. it is the number of 1s in z.

When writing log without specifying the base, we mean log, (binary logarithm). Nat-
ural logarithm is denoted by In. On the other hand, when using notation exp(f), we mean
e/. The expected value of a random variable X is E[X], and more generally its kth moment
is E[X*]. The sign function sgn assigns —1 to negative values, 1 to nonnegative values.
When it is applied on vectors it acts elementwise.

The usual composition of two functions f : A — B and g : B — C, is denoted by
gof : A — C, and it is the application of g on the result of f, i.e. for any z € A,
(go f)(x) = g(f(x)). In the case of multivariate functions f : A* — Bandg: B™ — C,
we define a different kind of composition: g® f : A™ — (), such that for any x € A™ also
denoted as z = (z1, T2, ..., Ty) WithVi € [m] x; = (21, Ti0, ..., Tin) € A", (9O f)(x) =

9([f (@), f(xa), -, f@m)).
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Notations O(-), €2(-) and ©(+) hide constant factors and dependencies on parameters
that are considered to be constants. Moreover, when augmented with the tilde notation they
also hide factors that are polylogarithmic in the argument. For example, f(n) € O(g(n))
means that there exists some constant k such that f(n) € O(g(n)log® g(n)).

Graph theory

An undirected graph G = (V, E) is a pair of a vertex set I and an edge set E. The latter
consists of edges that are unordered pairs of vertices: for u, v € V saying that v and v are
connected by an edge is equivalent to {u,v} € E. We say that there is a path between
s =wvp and t = vyyq (with s,t € V) if there exists an integer [ and vertices vy,...,v; € V
such that vy, vy, . .., v;41 are all distinct and Vi € [I]o : {v;,vis1} € E. Agraph G = (V, E)
is called connected if for every u € V and v € V'\ {u}, there exists a path between u and v.

A digraph or directed graph is like an undirected one, but the edges are directed (and are
often called arcs): a directed edge is an ordered pair of vertices, and (u,v) € F means that
there is a directed edge from « to v. Similarly to the undirected case, we say that there is a
directed path from s = v to t = v;41 (with s, € V) if there exists an integer [ and vertices
v1,...,v € V such that vg, vy, ..., v are all distinct and Vi € [l|o : (v;,vi41) € E. A
digraph G = (V, E) is called strongly connected if for every u € V and v € V' \ {u}, there
exists a directed path from u to v (and thus from v to u as well).

In a context where there are several graphs, we can emphasise which graph’s vertices
or edges we mean: for a graph G its vertex set is V' (G) and its edge set is E(G). A subgraph
of an undirected (resp. directed) graph G = (V, E) is any graph G’ = (V' E’) satisfying

VICV,E' CFEand E' C (( ‘;/ )) (resp. B/ C V' x V). Notice that these definitions allow

self-loops (i.e. edge from a vertex v to itself) but no parallel edges of the same kind (i.e. no
two edges from vertex v to u).

2.2 Query complexity

In the query complexity model, we consider inputs x € X! over a finite alphabet 3 and
indexed by a set /. They are not given explicitly to the algorithm. Instead, the algorithm
has query access (or black box access) to an input oracle O, encoding x. This means that
the algorithm can query each character of x: for any i € I it learns O, (i) = x;.

As examples, let us look at two kinds of inputs that are ubiquitous in discrete mathemat-
ics: strings of integers and graphs. When the input is a string s = (s1, ..., sy) of positive
integers < R, then [ = [N]and ¥ = [R).

In the case of graphs, there are multiple options. In the dense graph model, the algorithm
has query access to the adjacency matrix of the graph. For a graph with vertex set V, this
yields I =V x V and ¥ = {0, 1}. That is, querying a vertex pair (u, v) tells us if they are
connected by an edge in the graph or not. For undirected graphs, querying (u, v) and (v, u)
is equivalent, but in the directed case the order matters.

In the bounded degree model, we query the adjacency list of the graph. For a graph
with vertex set V' and degree bound d, we have I = V x [d] and ¥ = V U {_L}. Here
we assume that each vertex fixed an order of its neighbours, and a query (v,%) returns
the i-th neighbour of v if it exists, and a special character | otherwise. In the case of
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undirected graphs, this is well-defined, but for directed graphs there are two options. In
the unidirectional model, the algorithm only has access to the list of out-neighbours. On the
other hand, in the bidirectional model, there are two lists: one for the out-neighbours and
one for the in-neighbours, so the algorithm has to specify if it would like to learn the i-th
in- or out-neighbour of v. This can be achieved, for example, by the query containing one
further bit.

A property is a predicate P : Dp — {0, 1} over domain Dp C X!, Equivalently, it can
be interpreted as a subset of the domain: {x € Dp : P(x) = 1} (in Section 2.3 this subset
is denoted by P = Ilygs). The (randomised) query complexity of a property measures the
minimum number of queries that an algorithm has to make in order to decide with high
probability whether the property holds for any input. This is called worst-case complexity
because the algorithm has to make the right decision for every input, even the “hardest”
inputs (with high probability). This is in contrast with average case complexity, where the
input is taken from a distribution and thus the error probability over both the algorithm’s
internal randomness and the input has to be small, i.e. on inputs that the algorithm receives
with low probability, it can err. In this thesis, we only consider worst-case complexity.

2.3 Property testing

We assume that the input of an algorithm is taken from a universe that is some set U.
A property P is a subset of U, and we say that an input = € U satisfies P if x € P. In total
decision problems, the algorithm receives an input x € U, and it has to decide if x satisfies
a property P or not, i.e. if z € Porxz € U \ P.

In promise problems (or partial decision problems), the algorithm can assume that it will
only receive inputs that satisfy a promise which is a subset of the universe U’ C U. This
way, the task becomes easier: the algorithm only has to distinguish between = € Ilygg =
PNU orx €llyo = (U\P)NU' It is important to note that the algorithm may receive
any input from U, but it only has to satisfy some guarantees for inputs from U’.

Gap problems are a special case of promise problems where the algorithm is promised
to only receive inputs that are either in P or “c-far” (according to some distance measure
and parameter <) from any input in P. Here [Iygs = P and Iy is the set of inputs that
are e-far from P.

Figure 2.1 — Depiction of gap problems. The whole rectangle is U and the white area is U’.

In the case of property testing, the algorithm has to solve a gap problem with high success
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probability, i.e. it has to distinguish inputs that satisfy the property from those that are
“far” from the property. Before defining property testing algorithms, we need to discuss
the distance measure that is used in the definition.

The choice of distance measure usually depends on the query model considered. As
discussed before, in general, query access can be viewed as black box access to the input
r € X! where querying an index i € I reveals z; € 3. This way, the distance of two objects
is defined as the proportion of positions where they differ. Again, a property P is just a set
of inputs: P C 7.

Definition 2.3.1. The distance of two inputs x,y € X! is defined as

s = WL

We say that x is e-far from property P if dist(z,y) > ¢ forally € P.

In the case of graphs, the usual distance measures count the number of edges that one
needs to add or delete in order to transform a graph G to another one G’. Since the number
of vertices cannot change in this way, we can only compare graphs that have the same
number of vertices: |V (G)| = |V (G')|. But in general, the two vertex sets can be different
(i.e. we do not know how to relate the vertices in V' (G) to the ones in V(G’)), that is why
invariance under any permutation (or relabelling) of vertices is required. In fact, a graph
property is defined as a set of graphs that is closed under graph isomorphism [Gol17].

Remark 2.3.2. This difference, that for general properties we do not require permutation
invariance but for graph properties we do, may seem strange at first, but it only reflects how
the different objects are usually used. In most applications, the labels of the graph vertices
are not important, we are only interested in the overall structure of the graph (e.g. is there
a Hamiltonian cycle). But in string problems, the positions and values are often crucial (e.g.
pattern matching) which means no permutation invariance. However, for some special string
problems it can make sense to consider a permutation invariant distance measure: e.g. collision-
type properties (like k-collision-freeness in Chapter 4) admit an invariance over permutations
of both the positions and of the alphabet.

For example, in the dense graph model (where we have query access to the adjacency
matrix of the graph) the distance of two graphs G and G’ with |V (G)| = |V(G")| is defined
as dist(G,G") = %ﬁﬂ(al)}, where 7 is any permutation of the vertices and A denotes
the symmetric difference of the two edge sets. So, the distance is the number of edges where
the two graphs differ (up to isomorphism) divided by an upper bound on number of edges
(sometimes the denominator is set to (g) instead of n?).

In the case of bounded-degree graphs with degree bound d (where we have query access
to the adjacency list), the distance of two graphs is similarly defined as the number of edges
where they differ (up to isomorphism) divided by |V|d.

Now let us define property testing and its tolerant version.

Definition 2.3.3. Let 0 < € < 1 be a constant and P a property. A randomised algorithm A
is an c-tester for the property P if

1. Forallx € P: Pr[A(z) = accept] > 2/3;
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2. For all x that are e-far from P: Pr[A(x) = accept] < 1/3.
The probabilities are taken over the randomness of A.

Notice that no restriction is given on the acceptance probability of the property testing
algorithm for inputs that do not satisfy P but are e-close to it (the grey zone in Figure 2.1).

Definition 2.3.4. Let 0 < ; < &9 < 1 be constants and P a property. A randomised
algorithm A is an £,-tolerant e,-tester for the property P if

1. For all x that are £, -close to P: Pr[A(z) = accept] > 2/3;

2. For all x that are eo-far from P: Pr[A(x) = accept| < 1/3.
The probabilities are taken over the randomness of A.

We call a property P (tolerantly) testable if there is a (tolerant) property testing algo-

rithm such that the number of queries it makes is independent of the input length, it only
depends on the distance parameter(s).

2.4 Hoeffding’s inequality

In the field of randomised algorithms, it a very common technique to repeat a random
procedure several times in order to obtain better guarantees on the outcome, such as a
smaller variance. One of the most well-known results here is Hoeffding’s inequality. Some
of our proofs depend on this result, and we are going to use two variants of it.

Lemma 2.4.1 (Hoeffding’s Inequality [Hoe63], see also [DP09]). Let X1, ..., X; be inde-
t
pendent random variables such that a < X; < b and let X,y = % > X;. Then, for any
i=1
0> 0,

Pr [|X, Xoel| > 6] <2 —2t0°
1 [ Xavg — E[Xavg]| > 6] < 2exp G—a2)
For one sided deviation, the same result holds without the factor 2 in front of the ex-
ponential term. In the special case where all the X; are identically distributed Bernoulli
random variables (i.e. « = 0 and b = 1) this yields the following statement.

Corollary 2.4.2. Let Xy, ..., X; be independent Bernoulli random variables with the same

1

t
expected value E[ X |, and let Xgyy = > X, (thus E[Xsum| = t - E[X1]). Then, for anyé > 0,
-1

Pr [ Xgm — ¢ - E[X1] > 6] < exp (—26°/t) .

2.5 Quantum computing

In classical computing, the unit of information is a bit. A bit can be in either one of two
states that are commonly denoted by 0 and 1. Quantum mechanical phenomena show us
that elementary particles can be in a superposition of states. Using these phenomena, one
can create quantum bits or qubits: a qubit can be in a superposition of basis states 0 and 1.
For more formal definitions let us start with some linear algebra.
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2.5.1 Some linear algebra

A Hilbert space is a complete vector space equipped with an inner product. In this work,
we use finite dimensional Hilbert spaces over the field of complex numbers C. The complex
conjugate of a number z € C is z, and its absolute value is |2| = v/2z > 0.

Using the Dirac or bra-ket notation, a (column) vector is denoted by |v) and its conjugate
transpose by (v|. The inner product of two vectors |u) , [v) € C"is (u|v) = >, wvi € C,
and their outer product is |u)v| = M € C*" with M, ; = w;v; for all i, j € [n].

Let p be a positive integer, then the p-norm of a vector [v) € C" is defined as [|[v)||, =

1/p
(Zie[n] |vi|p> . For example, the 1-norm is just the sum of the absolute values of the

vector elements. For amatrix M € C"*™, its 1-norm is the maximum 1-norm of its columns
1My = maxepm) 3 iep [ Mil-

The trace of a matrix M € C™"™ is Tr(M) = >_
the eigenvalues of M (with multiplicities).

iefn] M, ;. It is also equal to the sum of

The adjoint (conjugate transpose) of a matrix M is denoted by M*. A matrix M € C"*"
is called Hermitian if M = M*; and it is called unitary if M M* = I where [ is the identity
matrix of size n X n. A Hermitian matrix M € C"*" is called positive semidefinite (or PSD)
if for all |v) € C", the real number (v| M |v) > 0.

The usual tensor product of vector spaces C* and C’ is denoted by C* @ C* = C. The
tensor product of vectors |u) and |v) is |u) ® |v) also denoted as |u) |v), as |u, v) or even as
|uv). The tensor product of matrices M € C*>*%t and M’ € C*2 is M @ M’ € Cua2xhb2,

2.5.2 The postulates of quantum computing

In this section we describe what are often called the four postulates of quantum com-
puting.

Qubit A qubit is a unit vector from C2. We denote the standard basis vectors of this space

by |0) = and |1) = O}. This way, any qubit can be expressed as « |0) + 3 |1) with

o] v -

a, 3 € Cand |al? + |3]* = 1. The scalars « and 3 are called probability amplitudes.

As a and 3 are complex numbers, they can alternatively be written in the exponential
form: o |0) + B[1) = |ale’= |0) +[Ble’?s |1) = e'=(|a]|0) + |Ble"“*~#)|1)). Here |al
and | 3] are reals from interval [0, 1] (still satisfying |a|? + | 3]* = 1); @, is called the global
phase and the phase difference ¢ = @3 — ¢, is called the relative phase. Both phases are
reals from [0, 27). Changing the global phase has no observable consequences, it leaves the
qubit unchanged. The relative phase ¢ is important, for example it explains interference,
and thus it is called the phase of a qubit.

Register A system that consists of several qubits is called a quantum register and it
is a vector in the tensor product space. For example, a 2-qubit system is a unit vector
from C* = C? ® C? that can be written as a linear combination of the standard basis
vectors |00) ,|01),|10),|11). Integers are often used instead of their binary encodings:
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10),]1),1]2),|3). We will call unit vectors in Hilbert spaces (quantum) states'.

If a quantum state can be written as a tensor product of individual qubits, it is called
separable, and otherwise it is entangled. For example, \/Li(|00) +]01)) = |0) ®\/L§(|0> +]1)) is
separable and \/Li (|00)+|11)) is entangled. Entanglement is a commonly used phenomenon
for example in quantum computing and communication.

Time evolution Quantum states can be transformed using unitary transformations, of-
ten called quantum gates. For example, if an n-qubit state |¢)) € C?" is transformed to
another state |¢) € C*" by unitary U € C?"*?", then we can write U [¢)) = |¢). Unitarity
corresponds to reversible transformations.

Examples of commonly used, elementary quantum gates include the Pauli X (bit flip)
and Z (phase flip) gates, the Hadamard gate / and the 2-qubit controlled-X (CNOT) gate.
The T gate shifts the phase by 7/4 and is linked to the Z gate by Z = T

s e A [ L e

o O O =
o O = O
_— o O O
o = O O

Measurement In this work we are not going to use precise details about measurements,
so instead of a long formal definition it suffices to give a simple intuitive example. When a
register is measured in the standard basis, it is “forced” into one of the standard basis states.
If the n-qubit register being measured this way is 2?281 a; |7) then by the Born rule, the
outcome of the measurement is |j) with probability |a;|* for all j € [2" — 1],.

2.5.3 Some models in quantum computing

There are several models of quantum computing (e.g. quantum Turing machine, adia-
batic model, quantum annealing), in this thesis only the circuit model is considered. Here a
procedure can be given as a quantum circuit, similarly to classical logic circuits.

Circuit model

In a quantum circuit, qubits (or registers) are drawn as horizontal lines with their initial

value written on the left-hand side. Then a sequence of quantum gates (for unitary U)

and measurements |~>X| is applied on them (from left to right). The contol of controlled

operations is denoted by e and it means that the application of the linked gate depends on
the value on this wire. After a measurement, the value on the wire becomes classical which
is denoted by a double wire.

It is preferable that a quantum circuit only contains small, 1 or 2-qubit elementary gates
that are relatively easy to implement physically. Similarly to their classical counterparts,
quantum circuits also have universal gate sets that are sufficient to implement any unitary

1. In fact, these vectors are usually called pure states. More generally, a quantum state can be a mixed
state that is a probabilistic combination of pure states and is commonly represented by a density matrix. In
this work, we are not going to use mixed states.
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Figure 2.2 — Example of a circuit that implements quantum teleportation.

transformation with high precision without making the circuit too large. An example of
a universal gate set is { H, T, C NOT'}. Taking accuracy into account makes this question
more subtle, but in this thesis we do not go into more details.

An example of a quantum circuit can be seen in Figure 2.2. It serves as a depiction of the
mentioned elements, and we do not go into details about each step of it. The main idea is
that using entanglement and classical communication it is possible to “teleport” any qubit
|4). By this we mean that originally, we have |1)) somewhere, but at the end of the protocol
it can be far away from it, without moving the original qubit.

According to the deferred measurements principle (see e.g. [AKN98]), every intermediate
measurement can be postponed to the end of the computation without changing the output
distribution. The transformation that allows this, introduces as many extra qubits as the
number of postponed measurements. This way, a circuit can be represented by a single
unitary transformation followed by some measurements. This is often useful, for example
when using some lower bound methods (see e.g. Section 2.5.4).

If our quantum algorithm solves a decision problem, the output depends on some mea-
surement outcomes. As there is inherent randomness involved in quantum algorithms, we
are usually satisfied with bounded error. Hence, we say that the algorithm solves the prob-
lem if it has small error probability. The space complexity of a quantum algorithm is the
number of qubits it uses, and its time complexity is the number of elementary gates in the
circuit.

Quantum query complexity

Quantum query complexity is similar to the classical version discussed earlier, but now
the query operator has to be unitary, and in the case of input + € ! one way to define
it is as follows: O, |i) |z) = |i) |z ® z;), for z € ¥ and i € I, where & is usually the sum
modulo |X| operation , but one could choose any reversible operation @. This version is
called qubit-query. In the Boolean case, when > = {0, 1}, we get O, |i) |2) = |i) |z ® x;) =
(1 =) |2) [2) + 2 [0) |1 = 2).

Alternatively, the query operator can give the query outcome in the phase, which ver-
sion is called phase-query. For this version, we identify each element of > with an integer
from [|3|] in a bijective manner. The phase query operator acts as OF |i) |2) = w*® |i) |z),
for € ¥ and i € I, where w is the |X|-th root of unity, i.e. w = ¢i2m/1%l . For exam-
ple, if x € {0,1}" and the initial state is the uniform superposition over the indices then
OF D 19 11) = 2 icy(=1)* [i) [1). So, in the resulting state exactly those indices get
phase -1 where x contains a 1-bit. One can show that the two quantum query models are
equivalent, i.e. one type of query can be simulated by the other type.

2T
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Quantum memory models

The memory model is an important question in any computational model. In classical
computing, the algorithm is executed by the CPU and the memory, RAM, is another device
with a different physical implementation. For various applications, quantum computers
need a similar but quantum memory, usually called QRAM. For a survey on QRAM see
[JR23], below we shortly mention some important aspects.

Both the data stored and the access to it (addressing) can be either classical or quantum.
Classical Random-Access Classical Memory (CRACM) yields the usual classical RAM. Clas-
sical Random-Access Quantum Memory (CRAQM) corresponds to a classical control of the
qubits. From the memory point of view the two most relevant versions are the ones with
quantum access. In the case of Quantum Random-Access Quantum Memory (QRAQM), the
data is stored in a quantum register and the algorithm can read and write it in superposition.
In this work, we do not need QRAQM.

Quantum Random-Access Classical Memory (QRACM) is the variant we are going to
use in this thesis. For quantum algorithms that solve classical problems, it usually suffices
to store classical information about the input in their memory. But for leveraging quantum
phenomena, it is necessary to have quantum access to it (i.e. to be able to address data in
superposition). This means that the data is stored in a classical table T": for example, in
the case of binary n-bit data, 7" € {0, 1}". It is addressed by a quantum register of [logn]
qubits, and there is an additional qubit for the output. QRACM means access to a unitary
Ur such that Uy |i) [b) = |i) |b @ T;). In fact, this is exactly what we assume in the case
of quantum query complexity: the physical implementation of the input oracle would be a
QRACM.

Similarly to classical RAM, we usually assume that QRAM access takes negligible time
compared to other steps of an algorithm. Unfortunately, this assumption is not yet experi-
mentally justified.

2.5.4 The polynomial method

The polynomial method is a lower bound technique for quantum query complexity,
introduced in [BBCT01]. In its simplest version, we have a Boolean alphabet (ie. ¥ =
{0,1}), and the algorithm has to compute a total function f : {0,1}" — {0, 1} with high
probability for any input = € {0, 1}", and the algorithm can use the query operator O,.

Definition 2.5.1 (approximate degree). Let f : {0,1}" — {0,1} ande > 0. A polynomial
p : {0,1}" — R c-approximates f if Vo € {0,1} : |f(xz) — p(z)| < e. Moreover, the
e-approximate degree deg_(f) of f is the smallest degree of such a polynomial.

Using the following result, it is possible to prove lower bounds on the quantum query
complexity of several problems — we are going to use it in Section 4.4. We give an overview
of the proof.

Theorem 2.5.2. Let f : {0,1}" — {0,1}. If a quantum algorithm, having query access to
any input x € {0,1}", computes f(x) with error probability at most 1/3, then the algorithm
needs to make at least deg ;3(f)/2 many queries.

Proof sketch. Using the deferred measurements principle, every quantum query algorithm
can be represented like the circuit in Figure 2.3: first it performs some input-independent
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Figure 2.3 — The circuit of a quantum query algorithm.

operations represented by a unitary Uy, then it makes a query by using unitary O,, then
some further input-independent operations Uy, etc. The circuit has three registers: X of n
qubits for the query, Y of a single qubit for the answer, and the other qubits that we call
the work register /. From now on, we omit the work register.

The state of the algorithm just before making the (¢ + 1)-th query is
|y = UOU_10,...Uy|0,0). At the beginning, |¢)g) = Uy |0,0) does not depend
on input x because at this stage no query has been made yet. Let us say that

1) = ZQn S, j j ] J, 2), where the amplitudes ozg»?z) are degree-0 polynomials in the
X Varlables For 1nduct10n let us assume that after ¢ queries it is still true that in
[Yy) = ZQn 'S ] 4 | J, z) all the amplitudes oz( ) are polynomials of degree at most .
Then let us look at what happens when we apply the query operator on |1);).

2m—1 1 2n—-1 1
Oy =Y a0, 1j,2) = D>l U1 =) j.2) + 2515, 1 — 2))
j=0 2=0 j=0 2=0

By the induction hypothesis, in timestep ¢ every ocgg is a polynomial of degree at most ¢ in

the z; variables, and by the above expression, the new amplitudes’ degrees only increase
by one. Since unitary U4, does not depend on the input, it cannot increase this degree. We
can conclude that if the algorithm makes g queries, then the degree of its amplitudes in the
state before the measurement is a polynomial of degree at most ¢. Since the algorithm’s
output depends on some measurement outcomes on this state, the probability of outputting
any bit, say 1, is a polynomial p of degree at most 2¢ because of the Born rule.

Now if this ¢-query algorithm computes f with probability at least 2/3 on every input
x, then this polynomial p(x) has to be close to f(z) for every x € {0,1}": in particular,
p is 1/3-approximating polynomial of f. Thus, since we know that any 1/3-approximating
polynomial of f has degree at least deg, 5(f), it follows that the quantum query complexity
of f is at least deg; 5(f)/2. O

Example 2.5.3. Let f{0,1}" — {0, 1} be the PARITY function: it is 0 if the input contains
an even number of 1s and it is 1 otherwise. Since the problem is symmetric, i.e. it is invariant
under any permutation of the input bits, it suffices to only consider the Hamming weight of
the input x: we denote f' : [n]o — {0, 1} the symmetrised version of f. Instead of looking
at polynomials over all the x;, we can use the symmetrised version of those too: this way the
degree can only decrease, so a lower bound on the symmetric version’s degree implies a lower
bound on the original degree.
It is clear that ' is alternating: f'(0) = 0,f(1) = 1,f'(2) = 0, (3) =

Consequently, any approximating polynomial p of [’ needs to satisfy p(0) < 1/3,p(1) >
2/3,p(2) < 1/3,p(3) > 2/3,.... Because of this fluctuation, polynomial p — 1/2 has n
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zeroes, thus p has degree at least n. Using the polynomial method (Theorem 2.5.2), a quantum
query complexity lower bound of n/2, i.e. )(n) follows.

2.5.5 Grover’s algorithm

One of the most well-known quantum algorithms is Grover’s algorithm for unordered
search (or Grover search) [Gro96]. Here the input is a list of n elements, ¢ of which are
“marked”, and one has to find a marked element. An alternative, decision version of the
problem is binary OR with a promise: given as input a Boolean function f : D — {0, 1}
with | D| = n, that is promised to satisfy either |f~*(1)| = t or | f~!(1)| = 0, the task is to
decide which is the case, i.e. if there is an # € D such that f(z) = 1. Classically, the com-
plexity of solving this problem with high (constant) probability is ©(n/t), but quantumly
itis ©(1/n/t) [Gro96, BBHT99]. This remains true in expectation even when the number
of solutions ¢ is not known in advance.

We are going to use a particular variant of this result, that has been used many times
in the literature (see e.g., [Amb04, Item 3 in Section 2.2], which was implicitly proved in
[BBHT99]).

Theorem 2.5.4. Let 1 <ty < N. There exists a quantum algorithm that, given t, and query
access to any function f : D — {0, 1}, makes O(\/ N/ty) queries to f and outputs either “not
found” or an element uniformly at random in f~1(1). Moreover, when |f~1(1)| > t, the later
occurs with high constant probability.

Remark 2.5.5. In practice, we will use this theorem when querying f(z), forxz € D, requires
making c queries to the input. In that case the total query complexity to G is O(cy/ N/tp).

Let us look at two modifications of this problem.

— If the number of marked elements is ¢, and an upper bound ¢; > t is known, then
finding all the marked elements with probability 1 takes ©(y/nt1) queries. It is a well-
known result, to the best of our knowledge it was first formally proved in [dGdW02,
Lemma 2]. See also the recent work of [VAGN24], where the authors make a tight
resource analysis of this algorithm.

— Finding a minimum (or a maximum) of a set of n elements with high probability can
be done in ©(y/n) queries [DH96].

An important generalisation of Grover search is called amplitude amplification, where
we are given black-box access to an algorithm .4 that returns a state |¢)). This state |¢)) is a
superposition over a set of elements some of which are “good”, and if |¢)) is measured, the
probability of a good outcome is p. Classically, if we want to boost the probability of getting
a good output to a constant (say 2/3) then we have to repeat A ©(1/p) times. Quantumly,
as a generalisation of Grover search, it suffices to repeat it ©(1/,/p) times [BHMT02]. We
formalise this in the next theorem statement.

Theorem 2.5.6. Let A be a quantum algorithm that does not make any measurements and
returns a state |1)) that, when measured, the probability of a “good” outcome is p > 0. Then
there is another quantum algorithm that, not knowing the value of p and having black-box
access to A and its inverse, makes O(1/,/p) calls to A and its inverse, and returns a state 1))
that, when measured, the probability of a good outcome is 2/3.
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Grover’s algorithm, minimum finding and amplitude amplification are used as a subrou-
tine in many quantum algorithms, because search is ubiquitous in algorithm design. Since
the quadratic speedup of search is tight by the lower bound of [BBHT99], most problems
admit at most quadratic quantum speedup in some of their subprocedures. Later in the
thesis we are also going to use Grover search as a subroutine.

Just like any quantum algorithm, Grover search and its variants have some bounded (at
most some constant) error probability. Because of this, when they are used as a subroutine,
sometimes even in a nested way, the error can accumulate and make the error probability
of the overall algorithm large. To prevent this from happening, one can reduce the error
probability of each Grover instance to inverse polynomial by repeating it several times. The
overhead is maximum a factor of log(1/d) to achieve error probability at most ¢, and this
overhead counts as negligeable in this thesis. Thus, from now on we assume that Grover
search and its variants return a solution in C:)(\/n_/t) queries without error.

2.6 Simplicial complexes and Betti numbers

An (abstract) simplicial complex over a set V' of vertices is a set family of subsets of V,
that is downward closed under the subset relation. It is called abstract because it is a purely
combinatorial object with no associated geometry, in contrast with a geometric simplicial
complex. In this thesis, we focus on finite abstract simplicial complexes, where the vertex
set V' is finite. A simplicial complex can be thought of as a higher-dimensional generali-
sation of graphs, or as a restricted hypergraph with the additional downward closedness
constraint.

Definition 2.6.1 (Simplicial complex). A simplicial complex K is a collection of finite subsets
of a vertex set V, such that if S € K and S" C S then S" € K. The sets in K with cardinality
k + 1 are called the k-faces or k-simplices of K.

One can draw a geometric realisation of an abstract simplicial complex in some space,
for example in a Euclidean space of appropriate dimension as follows. The vertices are rep-
resented (drawn) by points, the edges by line segments between the corresponding points
etc. In general, a simplex is represented by the convex hull of the points that represent the
vertices of the simplex, and these points are in general position. In a geometric realisa-
tion of a complex, we require that the drawings of any two simplices intersect only at the
drawing of the simplex that is their intersection.

Example 2.6.2. An example of a simplicial complex’s geometric realisation can be seen in
Figure 2.4. Its vertices (or O-faces) are labelled by capital letters. The edges (1-faces) are sym-
bolised by segments between pairs of vertices. There are two triangles (2-faces) in the complex
symbolised by the areas of grey colour: ABC and DEF'.

Triangle BEC' could be added easily to the complex. But for adding triangle D F'G one
has to add edge F'G' too in order to maintain downward closedness.

We denote the set of k-faces of a complex K by Fi.(K) = {S € K,|S| =k + 1} and
its size by dy(K) = |Fx(K)|. When it is clear from the context which simplicial complex is
being considered, we will write only F}, and di. The dimension of K is the largest integer
k such that K contains at least one k-face, that is, dim(K) = max{k : dy > 0}. The
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Figure 2.4 — A small example of a simplicial complex, see Example 2.6.2.

k-skeleton of K is the simplicial complex we get from K by deleting all its simplices of
dimension larger than k. Notice that the 1-skeleton of a simplicial complex is a (simple)
graph.

A clique complex is a special case of a simplicial complex and is defined by some under-
lying graph G. The sets in the clique complex associated to GG are exactly the cliques of G.
This implies, for instance, that a size-(k + 1) subset S C V is in the complex if (and only
if) all the size-k subsets of S are in the complex. For example, the simplicial complex of
Figure 2.4 is not a clique complex because all the edges are present between vertices B, E
and C but the triangle BEC' is not included.

A Vietoris-Rips complex or flag complex is a special case of a clique complex. Here the
vertex set corresponds to points (vectors) in a metric space, and two vertices are connected
by an edge if their distance is less than a scaling parameter e. Vietoris-Rips complexes
are useful for applications because it can be a straightforward way of obtaining a clique
complex from a data set with the data points corresponding to the vertices.

2.6.1 Orientation

Each simplex of the complex is assigned one out of two possible orientations that cor-
responds to the ordering of its vertices up to an even permutation. That is, if one can get
one ordering from another by swapping pairs of elements an even number of times, then
the two orderings correspond to the same orientation. For example, in a triangle ABC,
the two possible orientations are { ABC, BCA,CAB} and {ACB,CBA, BAC}. We say
that ABC, BCA,CAB,ACB,CBA, BAC all correspond to the same simplex, the first
3 of them with one orientation, and the rest with the opposite orientation. The two ori-
entations are often described by the sign of the permutation, for example sgn(ABC') =
sgn(BCA) = —sgn(ACB). This example is depicted on Figure 2.5, but in higher dimen-
sions it is more difficult to have a similar figure because cyclic-permutation invariance is
lost.

B B

A C A C

Figure 2.5 — The two orientations of a triangle and the induced orientations of the edges.

From now on, we take the vertex set V' = [n] (in the examples V' = {4, B, C'}) and

23



the positive orientations are the ones corresponding to the increasing order of the ver-
tices in each simplex. This way, we associate to each simplex a basis element (vector)
|S) = |vg...vx), where vy < vy < --- < vg. If the orientation of our simplex is the
opposite of the one corresponding to this ordering, then the associated element is — |5).
Thus multiplication by —1 just flips the orientation.

The orientation of a simplex induces an orientation of all the smaller simplices it con-
tains. In particular, having a k-simplex with associated element |vg . .. v}), the induced
orientation of its (k — 1)-faces that we obtain by omitting a vertex with even index stays
positive, and the others get a negative sign (using zero-based indexing). We can see an
example of this in Figure 2.5: on the left drawing, simplex ABC' with positive orientation
induces orientations BC, —AC' = C'A and AB of the edges.

2.6.2 Chain groups and boundaries

A free module is a generalisation of a vector space, where the coefficients (scalars) can
come from a ring instead of a field. In particular, a free module on basis B, over ring R is the
formal linear combinations of the elements of B with coefficients from R, i.e. {d, 5 asb}
where oy, € R. The rank of a free module is the size of its basis. A free Abelian group is a
free module over the ring of integers R = Z.

The k-chain is a free module that consists of all possible linear combinations of the k-
simplices of our complex. More formally, for simplicial complex K and k& > 0, the k-chain
CE of K over a commutative ring R is defined as the formal linear combination of the
k-faces of K, that is, C/X = {3.% a;|5;)} where S; € F},(K) and o; € R. We will often
write Cj, instead of CX when the complex does not need to be made explicit. If R = Z then
(' is a free Abelian group, and if R is a field then it is a vector space.

Usually R is taken to be the set of integers Z or a field like Q, R or C. In the special case
when R = F,, the coefficients are either O or 1, and thus we have unoriented faces.

For simplicial complex K and each k > 0 integer, the k-th boundary operator 9} is
a homomorphism that maps a k-face vector of K to the signed sum of the vectors of the
(k — 1)-faces that “surround” the k-face in K. It is defined formally as follows.

Definition 2.6.3 (Boundary operator). Let K be a simplicial complex and k > 1 an integer.
The k-th boundary operator of K is a homomorphism 0F : CE — CE |. For S € F}.(K) and
|S) = |vo, v, ..., vg) it is defined by (1)) = S8 (=1)7" 1S\ {v:}), and it extends to
CE by linearity.

We will usually omit the complex from the notation and only write 0.

B B

A C A C

Figure 2.6 — The boundary of a triangle, see Example 2.6.4.
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Example 2.6.4. Let us use the definition of the boundary operator to show that Figure 2.6 is
a correct depiction of it. If the vector associated to our triangle is |ABC'). Then

0 (|ABCY) = (=1)°|BC) + (1) |AC) + (-1)°|AB) .

Since the negative sign means changing the orientation, we get | BC)+|C'A)+|AB), matching
Figure 2.6.
We can also see that

0 (95(|ABC))) = 0(|BC) +|CA) +]AB)) = (IC) = |B)) +(|4) =|C)) +(|B) = |4)) = 0.

2.6.3 Homology groups and Betti numbers

In the example, we saw that the boundary of the boundary was zero. This is also true
in general, meaning 0y o J41 = 0 for any simplicial complex. This means that im(Jx;1) C
ker(0y) which implies that the quotient module ker(0y)/im(01) is well-defined, and it is
usually called the k-th homology group of the simplicial complex. Now we can define the
Betti numbers, that are at the centre of interest in Chapter 3.

Definition 2.6.5 (Betti number). Let k > 0 integer. The k-th Betti number 3} of a simplicial
complex K is the rank of the k-th homology group:

B = rk(ker(0g)/ im(051))-

Again, we will usually write (.

The elements of the k-th homology group are equivalence classes, and we define a k-
dimensional hole as a member of an equivalence class of the k-th homology group. More
intuitively, a hole is an element |H) of the k-chain C}, that has no boundary (i.e. its bound-
ary is 0) and is no boundary. Equivalently, the following two constraints hold for a hole.

— Ttis a cycle, formally Oy (|H)) = 0, meaning |H) € ker(0y);
— there exists no |H') € Cyy such that Oy 41 (|H')) = |H), so |H) ¢ im(Og11)-

Then [ counts the number of “independent” k-dimensional holes in the complex, that is,
the number of equivalence classes of holes. We will give a combinatorial way to formalise
this notion of independence in Chapter 3, using matroids.

Let uslook at what Betti numbers mean intuitively in low dimensions. In the special case
of £ = 0, By counts the number of connected components in the complex. The first Betti
number [3; counts those cycles made of edges, that are not filled by triangles. The second
Betti number counts those cavities made of triangles, that are not filled by tetrahedra.

Example 2.6.6. We continue the previous example to conclude that in a simplicial complex
over 3 vertices A, B, C, expression |H) = (|BC) + |CA) + |AB)) is a 1-dimensional hole if
and only if triangle | ABC') is not in the complex. Indeed, we saw that |H) € ker(0,), and
also that |H) € im(0,) if |ABC) is in the complex. Since in a complex with 3 vertices there
cannot be another triangle, we are done.
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Torsion in the homology group

The homology groups and Betti numbers depend on the choice of the coefficient ring
R. In particular, according to the universal coefficient theorem, one can determine the
homology groups under different choices of R from the homology group with R = Z, that
can be written a direct sum of two parts, called the free part and the torsion part. For
simplifying calculations, R is usually taken as a field, and next we focus on this case.

When the coefficient ring is afield When the coeflicients are taken from a field of finite
characteristic, for example R = [y, then the torsion part in the homology group may still be
nonzero, but in some cases, it can become zero. In the case where the coefficients are taken
from a field of characteristic 0 (e.g. R = R), then the torsion part of the homology group
is zero, and the free part embeds into a vector space. Thus, in this case, in the definition of
the Betti numbers we can write dimension instead of rank. In fact, Betti numbers are often
defined this way, as the dimension of the free part of the homology group [New18, Hat02].
In this thesis we use Definition 2.6.5 that does not constrain the choice of the coeflicient
ring, and thus it depends on this choice.

When there is a Euclidean geometric realisation In most applications, the simplicial
complex can be “drawn” onto a low dimensional Euclidean space. As a reminder, a complex
has a geometric realisation in a space if it is possible to “draw it nicely” in that space; and
the k-skeleton of a simplicial complex K is the subcomplex of all the at-most-k-dimensional
simplices of K. One can show that for a given k& > 0, if the (k + 1)-skeleton of the complex
has a geometric realisation in the (k + 1)-dimensional Euclidean space R**!, then the k-th
homology group over Z has zero torsion, and thus the £-th Betti number is the same under
different choices of R [Jon].

Combinatorial Laplacian

For a simplicial complex K and an integer £ > 0, the k-th combinatorial Laplacian
AK: CE — CK, usually written as Ay, is defined as

A=A} + AL
with Ay =0;00, and A] =00},

Here 0; is the adjoint boundary operator (also called the coboundary operator) that, written
as a matrix in the standard basis, is just the transpose of the usual boundary operator. For
example, as the boundary operator maps a triangle to the edges that surround it, the adjoint
of the boundary operator maps an edge to the triangles of which it is an edge.

This way, the combinatorial Laplacian can be seen as a generalisation of the usual graph
Laplacian. The graph Laplacian is Ay = Ag (since we cannot go to dimension —1, Aé =
0): intuitively it maps a vertex to those vertices with which it shares an edge. In higher
dimensions there are two options, for example we can map an edge to another if they share
a common endpoint (A%), or if they are edges of the same triangle (AD

A}, is a symmetric, positive semidefinite matrix of size dj X dj. Therefore, its eigenvalues
are all nonnegative, the smallest one is 0, and the smallest nonzero eigenvalue A\o(Ay) is
called the spectral gap of the Laplacian. The largest eigenvalue is denoted by Ajax (Af), and
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we call matrix Ay /Anax(Ax) the k-th normalised Laplacian. The normalised Laplacian has
eigenvalues between 0 and 1 and its smallest nonzero eigenvalue is ¥ = Ay/Apax, called
the normalised spectral gap of the Laplacian.

Based on Hodge theory [Hod41], we can get an equivalent definition of the Betti num-
bers using the combinatorial Laplacian:

Observation 2.6.7. The k-th Betti number over fields of characteristic 0 (i.e. in the torsion-free
case) O, = dim ker(Ay), thus it is equal to the number of zero eigenvalues of /..

2.6.4 Persistent Betti numbers and Laplacians

In particular, the so-called persistent Betti numbers have been useful for applications
[PEvt16, KMH'21, BAD21], they were introduced in [ELZ02]. Here, usually the Vietoris-
Rips complexes of a data set is considered at varying scaling parameters €. Starting with
€ = 0, where all the vertices are isolated, ¢ is slowly increased which makes some vertices
connected, and holes start to be formed. In the end, € is so large that the graph becomes a
clique, when all the holes are “filled”. During this process, the persistent holes, those that
remain holes for several values of ¢, are considered to be more important, because they do
not depend on the choice of € too much: they capture a scale-independent global property
of the data set.

Figure 2.7 — Filtration: Vietoris-Rips complexes at different € values. Source: [Riel7].

Now let us define persistent Betti numbers more formally. A filtration is a sequence of
simplicial complexes over the same vertex set where each complex contains the previous
ones: K1 C Ky C .- C K. For example, taking Vietoris-Rips complexes of a data set for
several values of increasing scaling parameters e defines a filtration.

Let us take any two simplicial complexes K, L over the same vertex set such that X' C L
— for example K is the Vietoris-Rips complex of a data set at scaling parameter ¢; and L is
the one at €5 > €;. The k-th persistent Betti number corresponding to pair (K, L) is defined
as

v = rk(ker(9F) /(im(9f,,) Nker(9)))-

Alternatively, in the above definition (im(d}, ;) Nker(d;*)) can be replaced by im(@,ﬁ’i),
where (9,ﬁ€ is the persistent boundary operator, that is like the usual boundary operator 9¢,
in L, but its image is restricted to the k-chain group C of K. This intuitively means that
the “persistent boundary” of a (k + 1)-face in L is a combination of k-faces in K. This
makes sure that only those holes are counted that are holes both in /K and L.

Persistent Laplacians can be defined analogously: Ay" = (9F)*0K + 8,55(8,5&)* It
was shown in [MWW22] that B,f L= dim ker(A,f’L).
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Chapter 3

Classical algorithms for Betti number
estimation

3.1 Introduction

In this chapter, we use simplicial complexes to model data sets. As we mentioned in the
previous chapters, Betti numbers are important features of simplicial complexes: intuitively
they characterise the number of high dimensional holes and thus give information about
the topology of the complex.

Unfortunately, computing Betti numbers efficiently seems like a challenging task, where
by an efficient algorithm, we mean one with time complexity polynomial in the number of
vertices n. Indeed, it was recently shown in [CK24] that multiplicatively approximating the
Betti numbers of a simplicial complex is hard for quantum computers, even in the special
case of clique complexes. In particular, without going into precise definitions of the com-
plexity class, multiplicative approximation of Betti numbers is QMA1-hard, where QMA1
is the 1-sided error version of QMA, and QMA is the quantum analogue of NP.

3.1.1 Additive approximation of Betti numbers

The next natural question is whether we can additively approximate the Betti numbers.
More formally, given a parameter ¢ € (0, 1), can we efficiently output an estimate 7y, of the
k-th (normalised) Betti number of the complex satisfying

where dj, denotes the number of k-faces in the complex. To the best of our knowledge,
Elek was the first to study this question. In [Ele10], it was proved that if the complex has
constant degree, that is, every 0-face (vertex) of the complex is contained in a constant
number of 1-faces (edges), then there is an algorithm whose running time depends only on
the parameter €. The constant degree assumption, however, implies that the complex has
constant dimension as well (that is, it contains no k-faces for k € w(1)), and thus all Betti
numbers [, for non-constant k are zero.

The problem was later reconsidered by Lloyd, Garnerone, and Zanardi [LGZ16], who
proposed a quantum algorithm for estimating the Betti numbers. Their algorithm combines
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quantum techniques such as Hamiltonian simulation and quantum phase estimation. As-
suming that we can efficiently sample a uniformly random k-face from the complex, the
algorithm outputs an e-additive approximation of /3, in time

poly(n, 1/v,1/¢),

where n = dy denotes the number of O-faces in the complex, and v is the normalised
spectral gap of the k-th combinatorial Laplacian.

As current classical algorithms for calculating Betti numbers seem to run in
time poly(dy) [Fri98], which can be poly(n*), this suggests an exponential
speedup (in k) of quantum algorithms over classical ones for this problem. This
explains the surge of interest in the quantum algorithm, and in particular, in its
application to clique complexes, which have a concise poly(n)-size description
[AUCT 24, CK24, MGB22, BSG' 24, SL23, AMS24, Hay22].

Our results: Section 3.3 is based on our results published in [AGSS23], where we de-
scribe a simple classical algorithm for approximating Betti numbers using the path integral
Monte Carlo method. Our algorithm provides a natural benchmark for the aforementioned
quantum algorithms. Similarly to these quantum algorithms, our algorithm runs in polyno-
mial time if the gap and the precision are “large”. However, while the quantum algorithms
can afford a gap -y and precision ¢ as small as 1/ poly(n), our algorithm requires these to be
constant for general complexes. This is similar to the dequantization results from [GLG22].

In the case of clique complexes, we can go further. For example, if £ € Q(n) then we
can afford precision £ = 1/ poly(n) if the gap is constant, or gap v = (1/log®n) if the
precision is constant. Overall, our result does not exclude a potential exponential quantum
advantage for the problem of estimating Betti numbers, but it narrows down the region
where it is possible. Below we give a more detailed overview of these results.

Technical overview

Using Hodge theory, we know that the k-th Betti number is the dimension of the kernel
of the k-th combinatorial Laplacian Ay. Let us define matrix H = I — A,/ where X is
an estimate of the maximum eigenvalue of A;. We can relate the trace of a large enough
power of H to the k-th Betti number: tr(H") is between [y, and [y, + edy if r > /\% log(1/¢)
where dj, is the number of k-faces in the complex and ), is a lower bound on the spectral
gap of Ag.

Now to estimate the k-th normalised Betti number f/dy, it suffices to estimate the
normalised trace of this large enough power of H: tr(H")/dy = é Zfil (1| H" |i). This
expression is the expected value of a random variable Y, defined by the following process.
Take a k-face uniformly at random and take r steps on the Markov chain with transition
probabilities corresponding to the elements of H. That is, the rows and columns of H
correspond to the k-simplices of the complex, and if we are on the i-th simplex, the next
one is going to be the j-th simplex with probability |H; ;|/||H.,i||;. The value of Y, is an
appropriate nonzero value (depending on the path taken) if at the end of this process we
are back at the initial k-face, and 0 otherwise.

We show that it is possible to sample from Y;. in time - poly(n) by taking r steps on the
Markov chain defined above, using the sparsity of /. Using a standard concentration bound
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(Hoeffding’s inequality), we can upper bound how many samples we need to take from Y,
to have a good approximation of its expectation with high probability. The complexity it
yields depends on the 1-norm of H that we can upper bound using the sparsity of Ay: we
get complexity nO(5los2).

We can improve the complexity with the following trick. Using Chebyshev polyno-
mials, any monomial of degree r can be approximated by a polynomial of degree roughly
/7. This way, instead of directly approximating the normalised trace of H", we can ap-
proximate " with a polynomial of lower degree and do the previously explained process
for each monomial of the polynomial. By calculating the combination of these estimates
with the polynomial’s coefficients, we obtain our desired approximation. This improves the

complexity to no(% o8 é).

The previous results work for general simplicial complexes. For the special case of clique
complexes, we get an improved complexity by noticing that the combinatorial Laplacian
of clique complexes is even sparser than in the general case: instead of O(nk) nonzero
elements, there are O(n) many. This results in a better bound when using Hoeffding’s

inequality. In particular, we obtain complexity (n/ /A\)O<%ﬁ log £ poly(n).

Since \ is approximately the maximum eigenvalue of A, which is known to be lower
bounded by £, in the high dimensional case, when k € €(n) (which is the interesting case
for the quantum algorithm of [LGZ16]), we get a polynomial runtime if % log % € O(logn).

Open problems A natural question is to what extent we can improve our results. The
most stringent barrier seems to come from [CC24, Theorem 6], who proved that Betti
number estimation for general (not necessarily simplicial) complexes is DQC1-hard when
e, = 1/ poly(n), where DQCI1 is a complexity class that is expected to be hard to simulate
classically. (In fact, they consider a slight generalization of the problem called “quasi-Betti
number estimation”.) This safeguards a quantum speedup for the case of general complexes,
yet it leaves open the case of clique complexes. Our work shows that we can get additional
leverage for clique complexes. We leave it as our main open question whether the classical
complexity for clique complexes can be improved to poly(n,1/v,1/¢).

The task of estimating persistent Betti numbers has been getting an increasing amount
of attention, see e.g. [WNW20, MWW22, Hay22]. It seems like our method can be used
for solving this problem too (if we have membership query access to both complexes K
and L with K C L), but we leave the formal proof of this for future work. Moreover, the
speedup in the clique complex case is kept because the persistent Laplacian can only get
even sparser compared to the usual combinatorial Laplacians. In particular, Lemma 3.3.11
still holds, but with the up-degree in L that can only be larger than in K.

A final open question, as was already mentioned in earlier works [BSG"24], is charac-
terizing which complexes admit a large spectral gap. The advantage of our algorithm, as
well as the aforementioned quantum algorithms, hinges on this assumption. As we men-
tioned earlier, [BSG'24] discussed the complete k-partite graph K (m, k) as an example
where our spectral gap assumption on the combinatorial Laplacian holds: see our state-
ment in Proposition 3.2.5. Observe that for K (n/k, k), the spectral gap is n/k, and the
normalised spectral gap is v = 1/k. Thus, for this kind of complexes our algorithm runs in
polynomial time if for example ¢ € (1) and k € O (log*(n)).
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Related work. Upon completion of this work, we noticed that a similar classical path
integral Monte Carlo algorithm for estimating Betti numbers was proposed in [BSG'24].
The authors use a Trotterisation approach to implement an imaginary time evolution of the
combinatorial Laplacian, and use a more complex distribution over paths to minimise the
variance of the Monte Carlo estimator. These techniques seem more flexible than ours and
might eventually lead to a better algorithm. However, unless some additional conditions
are imposed, the current runtime of their algorithm still shows an exponential dependency
on both k and 1/, which our algorithm avoids.

As a reviewer has pointed out, a similar usage of the path integral Monte Carlo method
to estimate elements of a matrix power is present in [DSTS17] (in particular, see their
Lemma 2.5).

Since its publication, several articles have used our results, let us mention two of these.
In [ABC*24] the authors implement and compare our algorithms’ performance to some
other work, highlighting their similar Monte Carlo structure. Moreover, they slightly im-
prove the estimation our algorithm provides, by using a different polynomial for approxi-
mating the matrix power. They also provide a new quantum algorithm by combining our
classical method with the quantum algorithm of [AUC™24].

The work of [CWST25] investigates the possibility of a superpolynomial quantum
speedup for computing matrix functions. They use some of our results in order to see
what is “easy” for classical algorithms.

3.1.2 Property testing Betti numbers

Our work presented in Section 3.4 investigates this question from a new, property test-
ing perspective in the dense graph model, and it yields a tool to investigate whether typical
graphs can have a (very) large Betti number. This is relevant for some of the previously
mentioned algorithms, since an additive estimate of a normalised Betti number is only in-
teresting if the Betti number is large.

The result of Elek [Ele10] in the bounded-degree model can also be viewed from a prop-
erty testing perspective. In their model, the graph is assumed to have a constant bound d on
the vertex degrees, and a query reveals the (at most d) neighbours of a vertex. Elek showed
that, for any ¢ > 0 and with a number of queries only dependent on ¢, it is possible to re-
turn an estimate Bk satisfying Bk = fr £enfor k < d (for k > d necessarily d, = 5, = 0).
The proof is based on (sparse) graph limits and is completely different from our approach.

Unfortunately, such a result is not possible in the dense graph model: returning an
estimate Bk: = () + en (or even Bk = [y £ edy) requires 2(n) many queries. To see
this, consider the case & = 0 for which dy = n and /3, equals the number of connected
components of the graph. The cycle graph has §y = 1, while any graph with < n/2 edges
has By > n/2. However, it takes 2(n) queries to distinguish these graphs in the dense
model. This motivates the weaker formulation of large Betti number testability that we use
in Section 3.4. Note also that the contrapositive, having a small Betti number, is trivial to
test. E.g., a graph cannot be far from having small Betti number [, since we can always
add a cycle, thereby setting 5, = 1.

Our results: In Section 3.4, based on our article [SA25], we use the lens of (graph) prop-
erty testing to further our understanding of Betti number estimation. In particular, we are
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given query access to the adjacency matrix of a dense graph GG and we want to test if the k-
th Betti number [, of the clique complex associated to G satisfies 5 > (1 — §)dy. We show
that this property (over F5) for constant k is testable with a constant number of queries in
the dense graph model if ¢ is very small. More specifically, we prove that for any ¢ > 0,
there exists d(e, k) > 0 such that testing whether 3, > (1 —0)dy for 6 < (e, k) reduces to
tolerantly testing (k + 2)-clique-freeness, which is known to be testable. For this, we use a
combinatorial understanding of simplicial complexes.

Technical overview

For proving the above result, first we observe that there is a notion of independence
of k-simplices that is useful in the context of this work. This notion comes from matroid
theory: we can assign a vector to each simplex based on its boundary, and a set of k-
simplices is independent iff the corresponding vectors form a linearly independent set. On
an intuitive level, this means that a set of k-faces is independent if no subset of them forms
a k-dimensional hole. We denote the maximum size of an independent set of k-faces in the
complex as 7.

We show that 7, cannot be much smaller than the total number of k-faces dj, in par-
ticular, dy(k + 1)/n < ry. Then we present two proofs' of an elegant formula, which
links the k-th Betti number to the total number of k-faces and to the maximum number of
independent k- and (k — 1)-faces: S, = d, — 15 — rp_1.

Then we turn to proving our main result, first in the special case of £ = 0. Using
the previous formula, 8y > (1 — §)dy (with the number of vertices dy = n) is equivalent
to r; < oOn, ie. it suffices to test if G has few independent edges. Then we use the fact
that r; can be at most about a factor-n smaller than d;, which leads to the conclusion that
Bo > (1—0)d, implies G to have few edges, and thus to be close to edge-freeness. Moreover,
one can check that being far from 5y > (1 — 0)d, implies being far from edge-freeness.
Hence, for appropriate parameters €, ) we reduced the problem of property testing very
large [, to tolerantly testing edge freeness.

In general, for constant k we can reduce testing 3y > (1—3)dy to tolerantly testing (k+
2)-clique-freeness, and the first part of the reduction is very similar to the & = 0 case. But
for the “farness” part of the reduction, we need a slightly more complicated argument. By
contraposition, we assume that there is a graph that is e-far from having a very large [y, but
itis £/2-close to (k+1)-clique-freeness. To reach contradiction, we use a construction that,
given a graph H with few (k + 1)-cliques and a proximity parameter «, provides another
graph H' that is a-close to H and whose clique complex has a large ;.. The construction
takes an vertices of H and modifies the subgraph induced by this set to change it into a
complete (k + 1)-partite graph.

Moreover, in the reduction we need to use the fact that containing few (k + 2)-cliques
implies being close to (k + 2)-clique-freeness, which is true by the well-known graph re-
moval lemma. However, using the graph removal lemma requires our parameter ¢ to be
very small, upper bounded by one over a tower function of log(1/¢) (this best known bound
is due to [Fox11]). For the special cases of £ = 0 and £ = 1 we can use simple observations
to avoid using the graph removal lemma and get much better bounds on 9.

1. Let us note that first we gave a combinatorial proof of this result, then we discovered that a very
different, algebraic proof had already existed in the literature.
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Unoriented faces We defined the k-chain group as the free module Cj, = {3, «;S;}
where R is a commutative ring, S; € Fi(K) and o; € R. As we discussed before, many
sources consider integer or real coefficients (R = Z or R = R), but for our combinatorial
interpretation of homology, it is more natural to pick binary coefficients R = F,. Homology
over I, is based on unoriented faces in which case the chain group C}, = 2 is simply the set
of all subsets of Fj,. We note that this way, the homology groups can have torsion, and thus
the Betti numbers can change compared to the torsion-free case, but in most applications,
this does not happen (see the discussion about torsion in Section 2.6.3). With this choice of
binary coeflicients, we will refer to the elements of C}, either as a sum of k-faces or as a set

of k-faces — the two are equivalent.

Open questions. Our work raises a few open questions. The most obvious one is whether
our results can be pushed further. For instance, it might be possible to test more moder-
ately sized Betti numbers, or Betti numbers for non-constant k (the case of interest for
quantum algorithms). Having similar results under different coefficient rings R is another
perspective.

A final open direction is to introduce the framework of property testing abstract sim-
plicial complexes, generalising graph property testing. By limiting ourselves to clique com-
plexes, we could phrase our results in the graph property testing language, but this might
not be the most natural approach.

3.2 Notations and preliminaries

3.2.1 Combinatorial Laplacians

Let us keep in mind the definitions of simplicial complexes and combinatorial Laplacians
from Section 2.6. We define the degree and the neighbourhood of a face as follows.

Definition 3.2.1. In a simplicial complex, the up-degree of a k-face S is the number of (k+1)-
faces that contain S. It is denoted as de = |{S" € Fyy1st. S C S'}|. The maximum
up-degree among all the k-faces is denoted as 6, = maxgcp, do .

Definition 3.2.2 (Down-up and up-down neighbours). Let Si, Sy € F} be two k-faces of
a simplicial complex K. S; and Sy are said to be down-up neighbours if their symmetric

difference |S1ASy| = 2. Additionally, if S1 U Sy is a (k + 1)-face of K, then Sy and S are
also said to be up-down neighbours.

The following lemma from [Gol02] uses these notions to characterise the entries of Ay.

Lemma 3.2.3 (Restatement of Laplacian Matrix Theorem, [Gol02, Theorem 3.3.4]). Let
K be a finite oriented simplicial complex, k be an integer with 0 < k < dim(K), and
{S1,52,...,8,} = Fy(K) denote the k-faces of K. Leti,j € [dgx]. Then we have the
following:

— (Ag)ij = £1ifi # j, and S; and S; are down-up neighbours but they are not up-down
neighbours.
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— (Ag)ij = 0 otherwise (i.e. ifi # j, and either S; and S; are up-down neighbours or they
are not down-up neighbours).

The following lemma gathers some useful facts about A, that will be used in our proofs.

Lemma 3.2.4. Let us consider a simplicial complex K with Ay, being its k-th combinatorial
Laplacian and 4y, being the maximum up-degree among all k-faces of K. Then the following
results hold:

— 0+ k+1 < Apax(Ag) < n.

— (Ap)iu < n.

— Ay, has at most (n — k — 1)(k + 1) nonzero off-diagonal entries in each row, all equal
to+1%

Proof. The second and third bullets follow from Lemma 3.2.3. The second inequality of
the first bullet follows from [DR02, Proposition 6.2], who prove that
/\maX(Al) < n and )\maX(At) < n. This gives the claimed bound if we use that
Amax (Ag) = max{)\max(Al), )\maX(Ai)}, which follows from AZAt = AtAg = 0 (which
is true because O (Ox+1(.)) = 0).

For proving the first inequality of the first bullet, we write the largest eigenvalue using
the Rayleigh quotient:

Amax(Ag) = Hnﬁaxl 2T A = ”rrﬁaxl(xTAZx + xTAtx)
z|o= z||o=
= ma (07,113 + |oua ).

We can lower bound this by taking a particular x: the one that is all zero except for
a position where it is one, and the latter position corresponds to a k-face with up-degree
d. For this vector, J; , ;x contains ), ones and the other elements are zero (because it has
up-degree d;). And it is also true that Oy contains k£ + 1 ones and the other elements
are zero (because every k-face contains k£ + 1 many (k — 1)-faces). This concludes that

o +k+1< /\maX(Ak). ]

A clique complex with large Betti number and spectral gap

Some algorithms that estimate the k-th Betti number, including our algorithm presented
in Section 3.3, require the spectral gap of the combinatorial Laplacian not to be too small,
or even the Betti number to be large. In [BSG'24, Section IV A] the authors describe a
construction of a clique complex and prove that it satisfies both requirements. As it is
relevant for us in this chapter, let us look at this result briefly.

For the (k — 1)-st Betti number, the underlying graph of the clique complex is the com-
plete k-partite graph K (m, k), where the total number of vertices is n = mk. K(m, k)
consists of k clusters, where each cluster contains m vertices, and two vertices are adjacent
iff they are in different clusters. The (k — 1)-st combinatorial Laplacian of the clique com-
plex defined by K (m, k), has spectral gap m and the (k — 1)-st Betti number of the complex
is (m — 1)* (see [BSG*24, Proposition 1 & 2]). This implies the following proposition.

2. This is tight up to a constant for general simplicial complexes, in contrast to some earlier papers
[GCD22, MGB22] that mention O(n) nonzero off-diagonal entries. Later in the chapter (see Lemma 3.3.11),
we show that for clique complexes it is actually O(n), and we exploit this to obtain a more efficient algorithm.
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Proposition 3.2.5. Let k < n be positive integers, such that n is an integer multiple of k.
Then there is a clique complex on n vertices that has (k — 1)-st Betti number (n/k — 1)¥, and
whose (k — 1)-st combinatorial Laplacian has spectral gap n/k.

3.2.2 Property testing subgraph freeness

The following well-known lemma (that can be proved using the Szemerédi regularity
lemma [Sze78]) has been central to proving many testability results, and we will also use it
in Section 3.4.

Lemma 3.2.6 (Graph removal lemma, [Fiir95]). For any fixed graph H and any e > 0, there
exists ad > 0 such that the following holds: any n-vertex graph G (|V (H)| < n) that contains
at most onlV )\ copies of H as subgraphs, can be made H -free by removing at most en?* edges
(i.e. G is e-close to being H -free).

It follows almost directly from this result that, for any constant-sized graph H, the prop-
erty of being H-free is testable, i.e. the query complexity of this property testing problem
does not depend on n [ADL"94]. We note that the bound on 0 in this result is extremely
small, even using the improved bound of [Fox11]: § = 1/tower(5|V (H)|*1log(1/¢)), where
tower(1) = 2 and for all i > 1, tower(i + 1) = 2tover(®,

This can be combined with the fact that every testable property in the dense graph
model is also tolerantly testable. More precisely, in [FN07] the authors prove that for every
testable property there is a distance approximation algorithm, and this implies tolerant
testability. This way, we get the following lemma which we are going to use later.

Lemma 3.2.7. For any graph H, the property of H -freeness is tolerantly testable in the dense
graph model. The number of queries depends only on the distance parameters 1,9 and on

|V (H)I.

Remark 3.2.8. The construction of [FNO7] takes a tester for any property and builds a tolerant
tester for the same property. The resulting query complexity is at least a tower in some function
of the (non-tolerant) tester’s query complexity. A later work [GKS23] obtained the following
improved upper bound. If a property is testable for error parameter ¢ with query complexity
q(e), then it is tolerantly testable with query complexity gpoly(1/e)-24(/2 ([GKS23] Theorem 9).

3.2.3 Matroids

The appropriate notion of independence of simplices and of holes that we will need in
Section 3.4, comes from matroid theory. A matroid is a downward closed set family with an
additional property called the exchange property. In this sense, matroids are a specialisation
of simplicial complexes, but we are going to use them in a different way.

Definition 3.2.9 (Matroid). A matroid M over ground set E is a family of subsets I C 2%
called the independent subsets of I/, and which satisfies the following properties.

1. 0el

2. IfAe€land BC AthenB € I.

3. IfA,B € I and|B| < |A| then 3v € A\ B such that BU {v} € I.
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The easiest example of a matroid is a graph. In this case, the ground set £’ in the matroid
is the edge set of the graph, and we call a subset of edges independent if it is cycle-free. Ma-
troids that can be defined this way by a graph are called graphic matroids or cycle matroids.

Another important example is linear independence of vectors. The elements of E are
vectors from a vector space, and a subset of them is called independent if the vectors are
linearly independent (over a field F'). Matroids that can be defined in this way are called
linear matroids (or representable over F').

By the boundary vector of a k-face S € Fj, we mean a binary vector 9;,(S) € {0, 1}%-1,
where a coordinate is 1 iff the corresponding (k — 1)-face appears in the boundary of S
(over [F5). Note that notation 0y was defined as the boundary operator, but sometimes we
are also going to use it to denote boundary vectors.

The simplicial matroid (or simplicial geometry) M, (K') associated to a simplicial com-
plex K is a linear matroid defined as follows. It appears in e.g. [CR70, CL87].

Definition 3.2.10 (Simplicial matroid). The k-simplicial matroid M;(K) associated to a
simplicial complex K is the linear matroid whose ground set is the set of boundary vectors

Ok(S) € {0,1}4%=1 for S € F(K).

Motivated by this, we call a subset of k-faces independent if the corresponding boundary
vectors are linearly independent (over the field I5).

A maximal independent set of a matroid M is called a basis. It is well known that all
the bases of a matroid have the same size, equal to the rank rk(M) of the matroid. The full
k-simplicial matroid My (K™) is the k-simplicial matroid associated to the full complex
KM = {S CV,|S| <k + 1} that contains all the k + 1-subsets as k-faces, but it does not
have any higher dimensional face.

Proposition 3.2.11 (e.g. [CL87], Proposition 6.1.5). rk(M;(Kf™)) = (".1).

For a construction, fix a vertex u of K"!! and take the set of k-faces that contain u. It is
easy to see that this set of size (";1) is a basis of the matroid.

3.3 Additive approximation of Betti numbers

In a nutshell, we base our algorithm on a random variable whose expectation is close
to k. /dy and whose variance is (sufficiently) small. Crucially, we show that we can effi-
ciently generate samples from this random variable. Standard concentration bounds can
be used to bound the required number of samples, and hence establish the complexity of
our algorithm. More precisely, the algorithm is based on the technique of path integral
Monte Carlo [Bar79], akin to the Ulam-von Neumann algorithm for solving linear systems
[FL50]. Our result is formally stated below. By A2(Aj) we denote the spectral gap of the
combinatorial Laplacian Ay, which is equal to its smallest nonzero eigenvalue.

Theorem 3.3.1. Let A, denote the k-th combinatorial Laplacian of the complex. Assume that
in time poly(n) we can (i) draw a k-face uniformly at random, and (ii) check whether a set is
in the complex. Given an estimate \yax(Ay) < )< CAmax (Ag) for some constant ¢ > 0 and
a lower bound ~y such that Ay, has spectral gap \o(Ay) > 75\, there exists a classical algorithm
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Algorithm Complexes Complexity is poly(n) if

quantum algorithm of [LGZ16] general v,€ € (1/ poly(n))

this work general v,€ € (1)

v € Q(l),e € Q(1/poly(n))
or vy € Q(1/log?(n)),e € Q1)

this work clique, k € Q(n)

Table 3.1 — Comparison of the parameter settings of quantum and classical algorithms for
the Betti number estimation problem under which their running time is polynomial.

that, for any € > 0, outputs with high probability an estimate Uy, = [y /dy + ¢ of the k-th
(normalised) Betti number of a general simplicial complex in time

0l ee2)

)

and of a clique complex in time

L

(2>O<ﬁlogi) - poly(n).

A

The algorithm has space complexity poly(n,1/~,log(1/¢)).

For general simplicial complexes, our algorithm improves upon the aforementioned
classical algorithms if & € €2(1/,/7). Now let us focus on the special case of clique com-
plexes. Since n > Apax(Ag) > k + O + 1 (see Lemma 3.2.4), with J;, being the maximum
up-degree over all k-faces (see Definition 3.2.1), we can simply set A=nifk e Q(n)
or if we know that J;, € §2(n). In such case, the algorithm for clique complexes runs in

time 20(71062) . poly(n). This is polynomial if either v € Q(1) and ¢ = 1/ poly(n), or
v € Q(1/log®n) and ¢ € Q(1). The algorithm provides a classical counterpart to the afore-
mentioned line of quantum algorithms for estimating Betti numbers which, under similar
assumptions, have a runtime scaling as poly(n, 1/7,1/¢). We summarize these findings in
Table 3.1.

The complexity of our algorithm for general simplicial complexes can alternatively be
obtained using the singular value transformation (SVT) algorithm by Gharibian and Le
Gall, or more precisely, the “dequantized quantum singular value transformation algorithm”
in Section 4 of [GLG22]. The main difference is that we use a path integral Monte Carlo
approach for computing matrix powers, instead of computing them explicitly as in [GLG22,
Lemma 3]. This approach provides us with an exponential improvement in the space com-

plexity since the SVT algorithm has space complexity n®(152)  The more significant
benefit is that we get an improved algorithm for clique complexes, which is the main case
of interest for the aforementioned quantum algorithms. We show that the k-th combinato-
rial Laplacian is n-sparse for clique complexes, as compared to general simplicial complexes
which are O(kn)-sparse. This implies that it is closer to a diagonally dominant matrix, and
we can exploit this for obtaining better time complexity when using the path integral Monte
Carlo technique.

37



3.3.1 Algorithm for general simplicial complexes

Consider a general simplicial complex K with vertex set [n], dj denoting the number
of its k-faces, Ay its k-th combinatorial Laplacian, and with k-th Betti number [ (over
a field of characteristic 0, like Q or R) . We wish to obtain an estimate 7, that satisfies
U = fPi/dy + ¢ for some parameter ¢ € (0,1). In this section, we make the following
assumptions:

1. In time polynomial in n, (a) we can check whether a set is in the complex, and (b) we
can sample a k-face from the simplicial complex K uniformly at random .

2. We have estimates A and 7 on the largest eigenvalue and the spectral gap of A,
respectively, satisfying

Amax(Ar) <A < Amax(Ar)  and  Ag(Ag) > A,

for some constant ¢ > 0. If we do not have such a bound on the spectral gap, an
alternative is to approximate the “quasi-Betti number”, which is the number of small
eigenvalues (below y\) of the combinatorial Laplacian, as in [CC24].

Note that instead of the first assumption we could say that we have query (and sampling)
access to the complex where we can ask for any subset of the vertex set whether they are in
the complex. This way learning the whole complex would take an exponential number of
queries (in n), so it is interesting to have subexponential query complexity. In the following
we continue to focus on time, because efficient time complexity is a stronger result than
query complexity.

We could introduce the normalised Laplacian Ay / A\, which has its spectrum between
0 and 1. Instead, we consider the related matrix

H=1-Az/

which, as we discuss below, satisfies 0 < H < [. From Lemma 3.2.4, we know that 0 <
(Ag)i; < nand Ay has O(nk) nonzero off-diagonal entries in every row, each of absolute
magnitude 1. This implies that

|H|, = mjaxz |H;j| € O(nk).

By construction, the k-th combinatorial Laplacian Ay is positive semidefinite, hence
all eigenvalues are non-negative, (35, of them are equal to 0, the second smallest distinct
eigenvalue is A\y(Ay), and the maximum eigenvalue is A\yax(Ax). Thus, by linearity, the
eigenvalues of H lie between 0 and 1, 55 of them equal to 1, and all other eigenvalues lie
below 1 — Ao (Ay)/ A <1—+. The following lemma shows how to relate the trace of H,
for sufficiently large r, to the Betti number [y.

Lemma 3.3.2. Ifr > %log% then B, < Tr (H") < B + ed.

Proof. On the one hand, we have that

d
Tr(H") =Y N(H) > B

3. Assumption (b) is automatically satisfied if the complex is dense in k-faces.
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On the other hand, we have that

d
_Zk)\i( )< B+ Z (1 —=7)" < B+ edy,
i=1

A (H)<1

where we used that (1 — )" < ¢ forr > %Ylog % O

Using this observation, we can obtain a 2¢-additive estimate of 3, /dj, from an c-additive
estimate of Tr (H") /di. To obtain the latter we use another observation, that holds not only
for large r as above, but for a general nonnegative z-th power of H.

Usually we have e.g. i € [di] and S; € F}, that is S, is a k-face and i is its id. In the
following, for simplicity but with a slight abuse of notation, i is also going to denote the
k-face itself.

Observation 3.3.3.

1 R
~ Ty (H) = — |H?|i
i r (H?) de@I B

=1

E[X"],

where i € [dy] is sampled uniformly at random and X9 = (1| H?|3).

Since H is O(nk) € O(n?)-sparse, we can evaluate X 2 exactly in time O(n??). Indeed,
this is the approach in [GLG22]. Here we use another approach based on the path integral
Monte Carlo method, which has two advantages. First, it improves the space complexity
from n®®), as in [GLG22], to (5(712) Second, it will lead to a faster algorithm for clique
complexes (see next section).

Let us denote the sign of H; ; by (—1)*®:9), with s(i, j) € {0, 1}. We can rewrite X\” as
follows:

X0 = (3| H]i)

A Higl o [ Hl
Y. (i, G1, ey o) i
Z [l Tl
with
z—1
}/z(.joajla"'a.]z ]0|j2 H S(J£+1’]Z)||H‘7]'Z||1'
=0
By Lemma 3.2.4, it holds that |Y,| < ||H||f < (n + nk)* € O(n**). By our choice of
normalisation, we can interpret |H;;|/||H.,;||1 = P(i,j) as a transition probability from
face i to face j. We can then say that
X,gl) = E [}/;(j07j17"'7jz)]7

(Jo=1,41,--J=)
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where the path (jo, j1,. .., J.) is drawn with probability P(jo,j1) ... P(j.—1,J.) from the
resulting Markov chain with transition matrix P. Moreover, if we choose the initial k-face
Jo € [di] uniformly at random, then

(0,91 5++232)

=E[X)] = L Tr(H?).

Jo dy
This gives us an unbiased estimator Y, for the normalised trace of H*. Moreover, as proven
in the following lemma, we can sample Y, efficiently.

Lemma 3.3.4. We can sample from 'Y, as defined above, in time z - poly(n).

Proof. We can evaluate Y, by sampling z steps of the Markov chain over k-faces. The initial
k-face jo is drawn uniformly at random. By our assumptions, we can do this in time poly(n).
Subsequent steps are sampled as follows.

Let j; be the current k-face. First, we learn the up-degree d;”, and hence (Ay);,;,. We
do this by, for all potential up-neighbours (obtained by adding one element to the face),
querying whether they are in the complex. This takes n — k — 1 queries, and hence time
poly(n). Then we learn all down-up neighbours by querying all O(n?) subsets with sym-
metric difference 2. This again takes time poly(n). By Lemma 3.2.3, we can now derive all
O(n?) nonzero entries of the j;-th row H. j,, and hence sample j; ;1 according to the prob-
ability P(jit1,7:) = |Hj..,5,1/|[H. ;1. This yields time poly(n) per step of the Markov
chain, and so z - poly(n) time overall. O

Intuitively, the algorithm does the following. Starting from a random k-face S we do a
random walk where in each step we move to a k-face S’ that is a down-up neighbour of S
but not an up-down neighbour of it (see Lemma 3.2.3). If, after some number of steps, we
get back to the starting face .9, it means that with high probability, there is a hole of k-faces.

It remains to bound the complexity of estimating E[Y,], given samples of Y,. For this,
we use Hoeffding’s inequality (Lemma 2.4.1), which yields the following lemma.

Lemma 3.3.5. For any 0 > 0 and integer = > 0, we can obtain a d-additive estimate of
E[Y.] = Tr(H?)/dy, by taking the average of O(n*?)/5? many independent samples of Y.

Proof. We know that |Y,| < [|H||} < (n + nk)* € O(n**) (Lemma 3.2.4). Consider p
independent samples Y i, ..., Y, , distributed according to Y,. For any ¢ > 0, Hoeftding’s

inequality (Lemma 2.4.1) states that
—2p6?
>0 <2 :
- ) =0T (O(n%)

1 p
Pr ( =) Y. —E[Y:]
p =1

If we choose p = O(n*?)/§? then %ZYM will be d-close to its expectation E [Y,] =
i Tr(H?) with probability at least 1 — 1/2P°V (), O

This leads to Algorithm 1, which has time complexity O(n**/§?).

For r > %log 2, we know from Lemma 3.3.2 that Tr(H")/d), = f/dx & €/2. Hence,
setting 6 = £/2 and z = r in the algorithm above we get an ¢-additive estimate of [y /dy.
The algorithm requires p = O(n*" /§?) = nC(5leet) samples of Y;, each of which can be
obtained in time r - poly(n) by Lemma 3.3.4. The overall time complexity of Algorithm 1 is

hence no(% log é)
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Algorithm 1: Algorithm for §-estimating Tr (H?) /d;, = Tr ((I — Ak/j\) Z) /dy

Input: Query and sample access to complex K, integer k, parameters Aand z,
precision parameter ¢ € (0, 1).
Output: Estimate est;, , such that est; , = Tr(H?)/dy £ 0 with high probability.

1 Set p = O(n**) /6%

2 fort=1,...,pdo

3 Sample a k-face jy of K uniformly at random.

4 Sample z steps (jo, j1, - - -, J») of the Markov chain P with initial face j.
s | Set Yy = (oljz) Ty (— 1) Urer3o) | Hj, .

6 Return est; , = % P LY.,

Improvement using Chebyshev polynomials

We can slightly improve this result by approximating A" with a polynomial of degree
roughly /7 using Chebyshev polynomials, and then estimating the monomials using Al-
gorithm 1. Let 7;(z) denote the i-th Chebyshev polynomial (of the first kind). They are
defined by recurrence T;(x) = 22T;_1(z) — T;_o(z), with Ty(z) = 1, Ty(z) = . Cheby-
shev polynomials are useful in approximation theory, for example in the following lemma.

Lemma 3.3.6 (Follows from [SV14, Theorem 3.3]). For anyd > 0 andd > +/2rlog(2/0),
the monomial x" can be approximated by a polynomial p, 4(x) of degree d such that |p, 4(x) —
"] < forallx € [—1,1].

Now we bound the size of the monomial coefficients in p, 4(x), as these will govern the
precision with which we need to estimate the trace of each monomial. Following [SV14,
Chapter 3], the polynomial p, 4(x) is obtained by first approximating =" in the Chebyshev
basis by

d
pra(@) = of” + > 20T (x)
=1

where Oégr) = ((T_’;) /2) /2" if i has the same parity as r, and alm = 0 otherwise. We then

obtain the desired coefficients of p, 4 in the monomial basis by expressing each of the Cheby-

shev polynomials in the monomial basis. Concretely, if T;(z) = 22:0 ng‘)xg then

d
pra(z) = ol + Z 20" T; ()
i=1

d [ d d
= oz((]r) + Z Z 2045”0?] zt = Z by’d)xg.

/=0 Li=¢ /=0

To bound the coefficients bér’d), we first bound the coefficients céi) in Lemma 3.3.7 below.
Combined with the bounds aﬂ < 1, this lemma yields the upper bound |b,| < (d + 1) -

2. 22d S 23d‘

< 9%,

Lemma 3.3.7. Foralli € N and ¢ < i, we have ‘céi)
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Proof. We prove the lemma using induction on 7. Remember that the Chebyshev polyno-
mials can be defined via the following recurrence

Ti(x) = 22T; 1 () — Ti-a(2),

< 2% hold for

1 =0and ¢ = 1. Now assume 7 > 1 and that for all 7/ < 7 and ¢ < 7', we have ‘Cé )

Then from the recursion T;(z) = 22T;_1(z) — T;_2(x), we obtain cy) = 261(82‘:11) - cgﬁ) and

hence ‘céi)’ < 92(=D+1 | 92(i-2) < 9. 92(i=1)+1 — 92 0

with Ty(xz) = 1, T1(z) = x. This immediately shows that the bounds |c

< 221.

Now we can describe an efficient algorithm that, for any € > 0, outputs an additive e-
estimate of [ /d; with high probability. The correctness and complexity of the algorithm
are proven in Theorem 3.3.8.

Algorithm 2: Algorithm for e-estimating /3, /dj,

Input: Query and sample access to complex K, integer k, estimates of A and 7,
precision parameter ¢ € (0, 1).
Output: Estimate 7 such that 7, = (i /d}. & ¢ with high probability.

1 Setr = Hlogg-‘ and d = [\/glogg-‘.

2 for/{=0,...,ddo

Estimate Tr(H*) /dj, to additive precision § = £/ (3(d 4 1)23?) with high
probability using Algorithm 1. Let est;, , denote the output.

4 Return 7, = ZZ:O bér’d)est]%g.

w

Theorem 3.3.8. Algorithm 2 returns with high probability an estimate of Py, / dy, with additive
1,1

error € in time no(ﬁ log f) .

Proof. First, we prove the correctness. By our choice of r, we know from Lemma 3.3.2 that

Tr(H")/dy, = Br/dr£e/3, so it suffices to return an (2¢/3)-additive estimate of Tr(H")/dy.
By Lemma 3.3.6, we can use the approximation

d
Ly = LSy et
i Tr(H") = ;O b, Tr(H') £¢/3

for d = L /2r logg < [\/glog g—‘ We estimate each term Tr(Hg) /dy to precision 0 =
m with high probability, so that the final estimator has a total error

d d

U = Z b(nd)eStk,ﬁ = Z bg’d) (Tr(H) /dy, + 6)

£=0 =0

(di > oordT (Hf)> +¢/3,

=
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using that ’Z?:o by’d)5‘ < 6(d + 1)23? < £/3. Combined with the previous error bounds,

this shows that 7, = (5 /d) + ¢ with high probability.
To bound the time complexity, recall that the time complexity of Algorithm 1 in Line 3
is O(n*/6%) € n°? /2, Summing over the d + 1 loops, and using the expression for d,

.. ) . . O(L log l)
this yields a total time complexity thatisn~ \v7 =</, [

This completes the proof of the first item of Theorem 3.3.1.

3.3.2 Algorithm for clique complexes

The complexity of our path integral Monte Carlo algorithm is dominated by the sample
complexity that follows from Hoeffding’s inequality (Lemma 2.4.1), which we bound using
the fact that |Y,| < ||H||{ and ||H||; = poly(n). Here we prove a tighter bound on || H||;
for the special case of clique complexes and exploit this to improve the algorithm.

We will use the following characterisation of the off-diagonal elements of the combina-
torial Laplacian Ay.

Lemma 3.3.9 (Follows from Lemma 3.2.3). Let A denote the k-th combinatorial Laplacian
of a simplicial complex K. Then (Ay,);; for i # j is nonzero if and only if the corresponding
two k-faces are down-up neighbours but not up-down neighbours.

The following claim is going to be useful for the proof of the next lemma.

Claim 3.3.10. In a clique complex, every k-face has at most n — k — 1 down-up neighbours
that are not its up-down neighbours.

Proof. Since we are in the clique complex case, a k-face is exactly a (k+1)-clique, so we will
use the two expressions interchangeably. We will prove a slightly stronger statement: every
vertex that is not in a (k 4 1)-clique C' can appear in at most one down-up neighbour of C
that is not its up-down neighbour. For contradiction, let us suppose that there is a vertex v
among the n — k — 1 vertices that are not in C' such that v belongs to two distinct down-up
neighbours C'; and C5 of C'. That is, suppose there are two distinct vertices u;, us € C such
that C) = C' \ {u1} U {v} and Cy = C'\ {uz} U {v} are (k + 1)-cliques. We show that
(' and () are up-down neighbours of C'. Indeed, v must be adjacent to every vertex of C"
from C} € K it is adjacent to all vertices in C' other than the vertex u;, and from Cy; € K
it is adjacent all vertices except for uy. So C'U{v} forms a (k + 2)-clique and hence C and
(5 are up-down neighbours of C. [

This section’s main observation is the following.

Lemma 3.3.11. The k-th combinatorial Laplacian of a clique complex has at mostn—k — d;"
nonzero entries in every row, that is,

{5 (A 20} <n—k—d* Vied,

where d;* is the up-degree of the k-face corresponding to the i-th row of the combinatorial
Laplacian.
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Proof. Because of Claim 3.3.10, every k-face has at most n — k — 1 down-up neighbours
that are not its up-down neighbours. Following Lemma 3.3.9, these elements correspond
exactly to the nonzero off-diagonal entries in Aj. Adding the diagonal element (Ay);;, we
obtain that the total number of nonzero entries in a row of the k-th combinatorial Laplacian
is at most n — k.

To improve this bound, notice that if a vertex v is adjacent to all the vertices of a k-face
(i.e, we have an up-neighbouring (k+ 1)-face), then v cannot be in any down-up neighbour
that is not an up-down neighbour as well. Thus, using Lemma 3.3.9 again, we can say that
every up-neighbour “cancels” the corresponding down-up neighbours in Ay.

Hence, if the k-face corresponding to the i-th row of the combinatorial Laplacian has
up-degree d;lp, then the number of nonzero entries in the i-th row of A, is not more than

n—k—dP. O
From this, we get the following corollary.
Corollary 3.3.12. ||H||; < 2n/\.

Proof. Recall that H = I — A, /). Thus,

| H]x = mgxz | Hij|

net<ol
A

- (Aw)y
(1) 3

< max
j

)/>

where for the first inequality, we used the fact that |(Ay);;| is either 1 or 0 if ¢ # j, and by
Lemma 3.3.9, it is 1 at most n times in every row or column. In the second inequality, we
used the fact that 0 < (Ay);; < n. Combining, we have the result. []

Now let us recall the path integral estimator Y, as defined in the previous section:

z—1

Ytz(jOujlv"'ujz jO‘.]Z H S(j£+1,jz)HH_,sz1_
=0

As a consequence of Corollary 3.3.12, it satisfies

. 2n\”*
v <l < (5)

2z
This improves the sample complexity in Lemma 3.3.5 from O (n**) /6% to O ((%") ) . 6%

O(z)
that is ( %) . 5%. This directly propagates to Algorithm 2, improving its time complexity

from
1

1 1 O(ivbg %>
no(ﬁlogg) to (%) v - poly(n).

The poly(n) term comes from the time required for sampling (Lemma 3.3.4). This completes
the proof of the second item of Theorem 3.3.1.
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3.4 Property testing very large Betti numbers

As a reminder, in graph property testing we wish to decide whether a graph has a
certain property, or whether it is “far” from having that property [Gol10]. In the dense
graph model, an n-vertex graph is e-far from having a property if we have to add or remove
more than en? edges for the graph to have the property. A tester for a given property is
a randomised algorithm that, given query access to the adjacency matrix of a graph G,
can distinguish with constant success probability whether GG has that property or is e-far
from having it. A graph property is said to be testable if there exists a tester that makes
a number of queries that is a function only of ¢, and so independent of the graph size.
Examples of testable properties are bipartiteness, triangle-freeness and, more generally,
monotone (closed under removing edges) and hereditary (closed under removing vertices)
graph properties [AS05, AS08].

In this section, we prove the following theorem (for a more formal statement see The-
orem 3.4.7).

Theorem 3.4.1 (Informal). The property of a clique complex having a (very) large k-th Betti
number is testable for constant k.

Recall that on an intuitive level, the k-th Betti number 3} of a clique complex defined
by underlying graph G counts the number of independent k-dimensional “holes” in the
complex, which is bounded by the number of (k + 1)-cliques dj, in G. More formally, fj
equals the rank of the k-th homology group.

In order to prove the theorem, in Section 3.4.1 we use the matroid notion of indepen-
dence to relate the Betti number ;. to the number of “independent” K- cliques in the
graph, and we bound the total number of cliques as a function of the number of indepen-
dent cliques. Then, in Section 3.4.2, we build on these tools to reduce the problem of testing
large Betti numbers to that of (tolerantly) testing clique-freeness, which is known to be
testable. In particular, we show that for any constant %, having a large Betti number im-
plies that the graph is close to being K o-free, while being far from having a large Betti
number implies that the graph is far from being K o-free.

We prove the result for

5(e,0) =v2e,  d(e,1)=¢/3,  d(e, k) = 1/tower(k*log(1/e)) (k > 1).

Here the tower({)-function denotes a height-¢ tower of powers of 2’s — this explains the
extra quantifier in “(very) large Betti numbers”. Nonetheless, this property is neither trivial

for constant k and £ nor monotone or hereditary. To see this, consider the (k + 1)-partite

graph which has dj, = (747)""" and 8 = (5 — 1)*" (Proposition 3.2.5), and so (./dy =
1—O(k?/n). This shows that for any k and § > 0, there exist graphs with the property 3, >
(1—0)dg. (Compare this to our Proposition 3.4.9 which states that any large clique complex
that has few k-faces is close to having a large k-th Betti number.) Moreover, the quantity

B/ dy, increases as a function of n, so the property cannot be monotone or hereditary.

3.4.1 Betti numbers via independent faces

In this section, we connect the number of independent k-faces with the total number of
k-faces, and connect the Betti number ), to the number of independent k- and (k+ 1)-faces
in the complex.
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The notion of independence of faces in Definition 3.2.10 leads to the following useful
observation. It is a direct consequence of the fact that a set of k-faces has zero boundary if
and only if the sum of the corresponding boundary vectors is the zero vector.

Proposition 3.4.2. In a k-dimensional simplicial complex (i.e., |Fy.+1| = 0), a set of k-faces

is independent iff no subset of them forms a k-dimensional hole.

The independence of holes is defined similarly. A k-dimensional hole is a set of k-faces
(an element of (), and associated to it is a characteristic vector over {0, 1}%. Remember
that in Section 3.2.3 we associated the same kind of (boundary) vectors to (k 4 1)-faces: in
this sense a k-dimensional hole can be seen as the boundary of a virtual (k+1)-dimensional
object. This way, a set of holes is independent if the corresponding vectors are linearly
independent (over field {0, 1}). An analogue of Proposition 3.4.2 tells us that a set of k-
dimensional holes is independent iff no subset of them (as virtual (k + 1)-faces) forms a
(k + 1)-dimensional hole.

Let us denote the rank rk(My(K)) of the k-simplicial matroid, i.e. the size of a maximal
independent set of k-faces in K, by r(K). Alternatively, we can say that r, = dim(im(0)).
We are going to need a lower bound on this value in terms of the total number of k-faces
di(K). For the sake of completeness, we also include an upper bound in the statement.

Lemma 3.4.3. For any 0 < k < n and any simplicial complex K

T2 0(K) < () < min {dk(K), (” . 1) } |

Proof. Trivially, ri(K) < di(K). Moreover, the set of k-faces F,(K') of any complex K can
be obtained from that of the full complex F;(K™") by removing faces, and this can only
decrease the rank. Combined with Proposition 3.2.11, we get r(K) < (";1)

Now let us prove the main part of the claim, which is the lower bound. We use a similar
argument to the one below Proposition 3.2.11. Let u be a vertex in K that is included in
a maximum number of k-faces (i.e., the vertex with the highest “k-face-degree”). These k-
faces that contain u are independent because each contains a (k — 1)-face that the others do
not (the one without w), and this is a non-zero element in their boundary vector. As there
are dy many k-faces in K, each incident to k£ + 1 vertices, the average “k-face-degree” of a
vertex is (k + 1)di/n. Thus, the independent set of k-faces defined by u has at least this
many k-faces, and so 1, > (k + 1)dy/n. O

The next lemma shows a nice connection between the rank, the number of faces and
the Betti number. For £ = 0, the formula gives the well-known graph formula ¢ = n — ¢,
where t is the number of edges in a spanning forest, n is the number of vertices, and c is
the number of connected components. When k£ = 1 and the underlying graph is connected
and planar, it gives the Euler formula n + f = e + 2 (with n the number of vertices, f
the number of faces surrounded by edges and e the number of edges) because 51 = f — 1,
di=e,rp=n—1andry =0.

Lemma 3.4.4 (e.g. [Nan] Proposition 3.13.). For any simplicial complex,
B = di — 11, — Th1.
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Proof. By applying the rank-nullity theorem to Oy, we get d; = dim ker Oy + dim im 0.
Now notice that dimim 0, = 7 because the independence of k-faces is defined through
their boundary vectors (Definition 3.2.10), thus we have dim ker 0y = dj, — . From Defini-
tion 2.6.5 we can see that §; = dim ker 0y — dim im Jk1. Substituting what we got before,
we obtain [y = (dy, — ) — Tka1- O

We also give an alternative, combinatorial proof of this lemma, which ties closer to the
spirit of this work.

Proof. The proof goes by induction. Let A denote the simplicial complex being considered
and let us take a basis of the k-simplicial matroid over A. For the base case, we consider
the subcomplex where this is the set of all £-faces and all the higher dimensional faces are
removed, in which case r, = d; and 5, = rry; = 0 and so the formula holds. In the
inductive step, we will put back all the removed faces. We start by adding the rest of the
k-faces one by one, and we argue that each added face creates exactly one new independent
hole.

First, note that adding a dependent k-face S to the complex creates at least one hole
(otherwise we could have added it to the basis by Proposition 3.4.2). Moreover, the hole
is independent of the previous ones because it contains the face S, which no other hole
contains so far.

Then, we prove that adding a k-face creates at most one hole. For contradiction, assume
that there is a k-face S such that when added to the set, more than one new independent
holes are created. We consider two of them, {S, Ry, ..., R,} and {S, T}, ...,T,}, which we
call the “R-hole” and the “T-hole”. Necessarily, they have zero boundary (we denote the
boundary vectors the same way as the k-faces):

S+ R+ +R,=0
S+ T+ +T, =0

Adding the equations shows that {R;,..., R,,T1,...,T,} must also be a hole, call it the
“RT-hole”. It does not contain S, so it must have been present before adding S. However, by
construction, the -, T'- and R7-holes are not independent, and so we get a contradiction.

Let A denote the complex we have now: it contains exactly the faces of A up to di-
mension k, and no faces of higher dimension. So far we proved that r, = dj, — Br(A).
Let us consider the set of “fillable” k-cycles in Ay, i.e. sets H of cardinality k£ + 2 where
all the (k + 1)-subsets of H are in Ay. These are those holes of A that may be filled by
(k + 1)-faces in A.

Now we continue the induction by adding to A, the (k + 1)-faces of A one by one
(and in the end the higher dimensional faces as well) to get back A. Each (k + 1)-face fills a
fillable cycle, and it is independent of the previously added ones if and only if the hole being
filled is independent of the previously filled ones (as they are the same subset). Thus, every
time A gains an independent (k + 1)-face it loses an independent k-hole. This finishes the
proof, as adding faces of dimension larger than k£ + 1 does not change any parameter in the
claim. []

In the special case where £ = 0 and the graph defined by the vertices and edges of K
is connected, we have 5y = 1, dy = n and r;; = n — 1 (a spanning tree of the graph is a
maximal independent edge set). Thus, 7y has to be defined as 0, which makes sense if we
think about ry as 7, = dim(im(0y)).
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Remark 3.4.5. Let T, = {S CV, |S| =k + 1} and A C Ty. In early works [CR70, Cor78],
only complexes of the form K"\, U A are analysed in detail. This family of complexes is not
enough to express the k-th Betti number of an arbitrary simplicial complex. For example, for
this restricted class of complexes Cordovil [Cor78, Proposition 1.2] showed that ri, = dy, — [,
which is only a special case of Lemma 3.4.4 (with 141 = 0).

An easy consequence of Lemma 3.4.4 is the following statement.

Proposition 3.4.6. For any simplicial complex K and k > 1, By (K) < (Z:)

Proof. In K[!, we have (), = dy — 1, — 0 = (k,il) — (";1) = (Z;i), and removing k-faces

or adding (k + 1)-faces cannot increase this value. []

3.4.2 Testing large Betti numbers

Now we turn to proving the main result of this section: that we can test whether a Betti
number is large. Below, we state our main theorem formally.

Theorem 3.4.7 (formal version of Theorem 3.4.1). Consider a clique complex K given by
query access to its underlying graph in the dense graph model. For any constant k and ¢ > 0,
there exists §(e, k) > O such that the graph property of having k-th Betti number (,(K) >
(1 — 0)dy (overFy) is testable for any § < (e, k) (with distance parameter ).

Even though our results in Section 3.4.1 hold for general simplicial complexes, the main
theorem is restricted to clique complexes. The reason for this is that we wish to phrase our
results in the well-established setting of graph property testing. By constraining ourselves
to clique complexes, having a large Betti number becomes a graph property (of the under-
lying graph) rather than a property of an abstract simplicial complex. Also, this way we
can use some previous results from graph property testing, like the tolerant testability of
subgraph freeness (Lemma 3.2.7).

Warm-up: testing many components

The 0-th Betti number [, of a clique complex K equals the number of connected com-
ponents of the underlying graph GG. As an informal warm-up and a blueprint for the general
case, we show how to test whether 5y > (1 — 0)n. The argument involves two reductions.

First, we argue that having a large 0-th Betti number is equivalent to having few in-
dependent edges. From Lemma 3.4.4, we get that 5y = n — r; — ro where o = 0. Thus,
Bo > (1 — d)n is equivalent to r; < dn, so testing large /3 reduces to testing whether G
has a small number of independent edges.

Now comes the second reduction, in which we argue that testing whether G has few
independent edges can be reduced to tolerantly testing edge-freeness. For this, note that if
G has ry < dn independent edges then the total number of edges |E| < (') < §2n?/2+
O(n). Note that if we applied Lemma 3.4.3, we would get |E| < ryn/2 < dn?/2. We get the
better bound by noticing that if there are dn independent edges, then we have a maximum
number of edges if all the independent edges are in the same connected component and
this component is a K, 1.

|E| < 6*n?/2+O(n) implies that so G is 1.1§? /2-close to being edge-free. On the other
hand, if G is e-far from having r; < dn, then G must also be e-far from having ; = 0, i.e
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from being edge-free. Therefore, we reduced the problem of testing 5y > (1 — d)n to that
of tolerantly testing edge-freeness (with parameters 1 = 1.16%/2 and &5 = ¢). It remains
to note that edge-freeness is tolerantly testable by Lemma 3.2.7.

General case

We now turn to proving our general result (Theorem 3.4.7), that having a Betti number
Br > (1 — §)dy is testable for constant k. Following the blueprint from the £ = 0 case,
we first reduce the problem to testing whether there are few independent (k + 1)-faces,
and then reduce testing few independent (k + 1)-faces to tolerantly testing (k + 2)-clique
freeness.

We consider a clique complex K with underlying graph G. From Lemma 3.4.4, we get
that

di = Tk1 = Be = dg — The1 — T, (3.1)

from which we can prove the following lemma.

Lemma 3.4.8 (Large Betti number < few independent cliques). In a clique complex K with
underlying graph G, if B, > (1 — 0)dy, then rp < ddy. If G is e-far from having i, >
(1 —0)dy, in K, then it is £ /2-far from having r.1 = 0, i.e., G ise/2-far from K} o-freeness.

Proof. The first part of the claim is clear from Equation (3.1). For the second part (being
e-far), we will use the definition of e-far (Definition 2.3.1). That is, we want to prove that
if every graph that is e-close to G has ;, < (1 — §)dj, then every graph that is £ /2-close to
G satisfies .11 > 0.

For contradiction, assume that there is a particular H that is £/2-close to G but has
Tr+1 = 0. Since H is e-close to G, it has ;< (1 — 0)dy, or equivalently 7 + 711 > ddg
(using Lemma 3.4.4). Because of this, we have dj, < r,/§ < (".')/6 (by Lemma 3.4.3).
With the construction of Proposition 3.4.9 below, we can modify H to get an H' that is
a = ¢/2-close to H (thus still e-close to (G) and that has 3, > (1 — ¢)dj. This contradicts
the assumption that every graph that is e-close to G satisfies 5, < (1 — §)dy. []

Proposition 3.4.9. Consider agraph H = (V, E) with |V | = n sufficiently large, and assume
that H has at most (";1)/(5 k-faces. Then for any constant proximity parameter «, there is
another graph H' that is a-close to H and has 5, > (1 — 0)dy.

Proof. We give a construction that modifies H to get H'. Let us choose any vertexset S C V/
of size |S| = an. We delete all the edges that go between S and V' \ S, and we modify the
edges within S to construct a complete (k + 1)-partite subgraph. This modifies at most an?
edges, so yields a graph H’ that is a-close to H. .

n ) +1

The subgraph of H’ induced by S is a complete (k + 1)-partite graph with (ﬁ

many k-faces. Thus, in H’ we have at most this amount plus the number of original k-
faces of H, ie. dp(H') < (22 )kJrl + (") /4. The number of independent k-holes in the

k+1
subgraph of H' induced by S is (;‘—J:Ll — l)kJrl (see Proposition 3.2.5), so in H' it is at least
this much: 5, (H') > (;‘—ﬁ - )kH. Clearly px(H')/dp(H') =1 —O(1/n). For any 6 > 0
this is at least 1 — ¢ for n sufficiently large. O]

Remark 3.4.10. In Lemma 3.4.8, the second proximity parameter is not necessarily half of
g, it can be arbitrarily close to it. For example, it could be 0.99¢, but then we have to use the
construction of Proposition 3.4.9 with o« = 0.01¢ instead of /2.
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For our second reduction, we use Lemma 3.4.3, which tells us that if 4,y < dd}. then

5 5 n 5
dpiq < dy < ——— < sars
e k+2”(k+1> e
k+2

Combined with Lemma 3.4.8, we get that 3, > (1 —§)dy, implies dy; < %2)!71 . We see
that a large Betti number implies a small number of K} o-s in the grapﬁm while being far
from having a large Betti number implies being far from K o-freeness (by Lemma 3.4.8).

In fact, by the graph removal lemma (Lemma 3.2.6), a small number of K ,-s implies
that the graph is close to being K} o-free. More specifically, for any ¢’ > 0 there exists
d = 0(k,e’) > 0 such that if G has at most (kf_Q)!nk“ many K} o-s then G is £'-close
to being K} o-free. By picking (say) ¢’ = £/2, it follows that we can test whether 5, >
(1 — &)dy, by tolerantly testing whether G is €/2-close or e-far from K} o-freeness. By
Lemma 3.2.7, we know that /;, o-freeness is indeed tolerantly testable, and this proves our
main Theorem 3.4.7.

To finish, we comment on the complexity of the algorithm. The complexity of (non-
tolerant) K o-freeness testing is dominated by 1/. Using Remark 3.2.8, we obtain a com-

plexity of 2P (1/ 227" for the tolerant version, which is what our algorithm uses. Hence,
we need to focus on the scaling of § = d(k, €).

The current best upper bound in the graph removal lemma requires
§(k,e) < 1/tower(5(k + 2)*log(1/¢)) [Fox11]. As a reminder, tower() is a tower of twos
of height i (e.g., tower(3) = 2%°). For the case of k = 0, we could avoid this: recall from
Section 3.4.2 that 7; < dn implies that G is §?/2-close to being edge-free. Similarly, for
k = 1 we can get a better bound: r, < ¢n? implies that G is 36-close to being
triangle-free. Indeed, if we remove all the edges of a maximal independent triangle set (at
most 3dn” edges), then any remaining triangle in the graph would contradict the
maximality of the chosen set. We leave the extension of similar arguments to higher & for
future work. In conclusion, we get a tester that distinguishes 5, > (1 — J)d, from being
e-far under the constraints

§<V2e (k=0), d<e/3 (k=1), &<1/tower(5(k+ 2)*log(1/e)) (k> 1).
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Chapter 4

Quantum property testing

4.1 Introduction

Some researchers have already considered efficient quantum algorithms for property
testing both classical and quantum objects, see for instance [BFNR08, ABRW16, HLM17,
BDCG™20, AS19] and the survey [MdW16]. Notably, the authors in [ACL11] initiated the
study of bounded degree graph property testing in the quantum model. One important
result in this context is the result of [BDCG'20], who proved that there can be exponential
quantum advantage in the bounded degree graph model of property testing. However, as
mentioned in their paper, the graph property admitting the exponential quantum advantage
is not a natural one.

4.1.1 Property testing of directed bounded degree graphs

While all the aforementioned works consider undirected graphs, many real-world in-
stances (such as the world wide web) correspond to directed graphs. Consequently, Bender
and Ron [BR02] introduced a model of property testing for directed graphs in the classical
setting, focusing on the properties of acyclicity and connectivity. Following that work, we
open a new research line by studying quantum algorithms for testing directed graphs. As
we will see, by doing so we address new fundamental questions in the field of quantum
query complexity. Answering them requires using recent techniques and partially answer-
ing some new or open questions.

As described in [BR02], for bounded-degree directed graphs there are two natural query
models: (i) the unidirectional model, where the algorithm is allowed to query the outgoing
edges of a vertex, but not the incoming edges, and (ii) the bidirectional model, where the al-
gorithm can query both the incoming and outgoing edges of a vertex. Interestingly, [BR02]
showed that strong connectivity is testable in the bidirectional model (i.e., it can be tested
with a number of queries that depends on ¢ but not on N), but it requires Q(v/N) queries
in the unidirectional model. Later, the testability of other graph properties like Eulerianity,
vertex and edge connectivity [OR11, YI10b, FNY"20, CY19] was also shown in the bidirec-
tional model. While there is a clear distinction between the two models, Czumaj, Peng and
Sohler [CPS16] showed that if a property is testable in the bidirectional model, then it has
a sublinear (i.e., o(N)) query complexity in the unidirectional model.

In this chapter, we consider a particularly important problem in the unidirectional
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model: the problem of testing subgraph-freeness. More precisely, we examine the prob-
lem of property testing “k-source-subgraph-freeness”, where the goal is to test H-freeness
for some constant-sized subgraph H with k “source components”, where a source compo-
nent is a strongly connected subgraph that has no incoming edges. This problem was first
studied by Hellweg and Sohler [HS12], and they provided a testing algorithm that performs
O(N'~1/k) queries. They also proved a tight lower bound of Q(N??) for the k = 3 case
(see [HS12, Theorem 1 and Theorem 3]).

Recently, Peng and Wang [PW23] proved a matching lower bound for any constant k.
In particular, they showed that Q(NV 1_%) queries are necessary for testing k-star-freeness
(which is a special case of k-source-subgraph-freeness) in the unidirectional model, for
arbitrary k (see [PW23, Theorem 1.2]). Notice that asymptotically the complexity of test-
ing k-star-freeness becomes {2(N). This also proves that the aforementioned reduction of
[CPS16] cannot be made much stronger: for the property of k-star-freeness, the separation
between the query complexities in the bi- and unidirectional models is maximal, because
this property can be tested using constant number of queries in the bidirectional model.

4.1.2 Related works on collision finding

A closely related problem to finding k-stars in graphs is finding k-collisions in integer
sequences. The two mentioned classical papers on subgraph-freeness testing [HS12, PW23]
actually consider a collision-type intermediate problem for proving their lower bounds. As
we are also going to do so, let us look at some related, known results.

The problem of collision finding is a ubiquitous problem in the field of algorithm theory
with wide applications in cryptography. Here, given a sequence s of NV integers, the goal
is to find a duplicate in s. If one has the guarantee that © (V) elements of the sequence are
duplicated, which is the case, for instance, when the sequence consists of uniformly ran-
dom integers from [N}, it is well-known that classically ©(v/N) queries are necessary and
sufficient due to the birthday paradox. In the quantum model, this can be solved with query
complexity ©(N'/3) by the algorithm of Brassard, Hoyer and Tapp [BHT98]. The matching
lower bound was first stated for a specific set of hard instances known as 2-to-1 (i.e., each
integer appears exactly twice or not at all) by Aaronson and Shi [AS04]. For some constant
integer £ > 3, those results can be further extended to finding k-collisions in a random
input with suitable alphabet size, so that it contains ©(/N) k-duplicates with high proba-
bility. The classical query complexity for this problem is ©(N'~/*) [HS12, PW23], and

1 1
quantumly it is © ( N2 (12k—1)) [LZ19]. The situation is more complex for non-random

inputs.

Remarkably, the complexity of testing k-collision-freeness (i.e., the absence of
k-collisions) is harder to settle on the lower bound side than the finding version. In this
work, we are going to focus on the hardness of distinguishing inputs that have linearly
many collisions from those that do not have any. For k£ = 2, the two problems have the
same complexity, since intuitively the only way to distinguish is to find a collision. This
can be formalised easily in the classical case. Quantumly, this is more challenging, but the
lower bound in [AS04] proved the hardness of distinguishing between 2-to-1 instances
and ones with no duplicate.

However, for larger k, distinguishing such inputs might be easier than finding a col-
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lision. The classical upper bound of O(N'~/*) queries is straightforward for the finding
variant. In the lower bounds of [HS12, PW23], the authors consider the distinguishing ver-
sion, so classically the question is settled. But in the quantum setting, the upper and lower
bounds of [LZ19] are tight only for finding £-collisions in random inputs, and for the dis-
tinguishing variant, we are not currently aware of anything better than the Q(N'/3) lower
bound corresponding to the k = 2 case. To our knowledge, prior to our work, this problem
has not yet been studied in the quantum setting.

4.1.3 Our results

In this chapter, based on our paper [AMSS25], we present two lines of results for quan-
tum property testing of graph properties.

In the first line, we consider the problem of testing k-source-subgraph-freeness in the
unidirectional model. This problem is almost maximally hard for large % in the classical
regime, and we show that it admits an almost quadratic advantage in the quantum setting.

Theorem 4.1.1 (Restated in Theorem 4.3.3). The quantum query complexity of testing k-

1(p—_1
source-subgraph-freeness in the unidirectional model is O <N2 (1 k-1 )

In order to prove the above result, we connect it to the problem of finding k-collisions.
In [LZ19], an algorithm is given for finding k-collisions in sequences of random integers.
We generalise this to the context of graph property testing in two ways: first, finding a
subgraph (instead of a collision); and second, considering graphs that are far from being
H-free (instead of random).

Moreover, we prove that this quantum advantage is nearly tight, by showing a quantum
lower bound using the method of dual polynomials.

Theorem 4.1.2 (Corollary of Theorem 4.1.3). The quantum query complexity of testing k-

source-subgraph-freeness in the unidirectional model is Q(N%(lfé)).

For proving graph property testing lower bounds, both the classical works of [HS12] and
[PW23] prove collision testing lower bounds using the proportional moments technique of
[RRSS09]. At the heart of this technique is a construction of two positive integer random
variables, X; and X5, with different expectations but with the following conditions on the
first k — 1 moments: E[X,]/ E[Xs] = E[X?]/E[X?] = ... = E[XF !/ E[X57Y]. Such a
construction leads to a randomised query complexity lower bound of Q(N 1’%) for various
property testing problems such as k-collision-freeness [PW23]. Having a quantum version
of this technique has been identified as an important open problem [ABRW16], since this
could be used to pave the way to stronger quantum lower bounds in related settings. We
modestly made progress to this quest for the special case of testing k-collision-freeness.

In [LZ19], in addition to the algorithm we mentioned, they also prove a matching lower
bound showing that their algorithm for finding k-collisions in random inputs is optimal.
However, this time we cannot reuse those techniques for our purpose for two main reasons.
First, the property testing variant of this problem could be easier. Moreover, their lower
bound technique requires random inputs and hence it does not apply to our case. This is
why we use yet another method, that of dual polynomials, to prove our lower bound.
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Theorem 4.1.3 (Restated in Theorem 4.4.1). The quantum query complexity of testing k-
collision-freeness is ) (N%(l_%)) .

In the second line of results, we show that not all problems in graph property testing
admit such a quantum speedup. This fact even remains valid for the case of undirected
graphs both in the bounded-degree and dense models. In the bounded-degree model, we
consider the property testing variant of the famous problem of 3-colourability: namely,
distinguishing whether an unknown undirected graph G on NN vertices can be properly
coloured with 3 colours, or one needs to modify a large fraction of its edges to make it
3-colourable. In the classical bounded degree setting, this problem has been studied by
[BOT02], who proved a lower bound of {2(N) queries. In this work, we present a simple
argument that proves that there exists no sublinear quantum tester either for this problem.
Our result is stated as follows:

Theorem 4.1.4 (Restated in Theorem 4.5.1). The quantum query complexity of property
testing 3-colourability in undirected bounded-degree graphs is (N ).

We complement this with a similar result in the dense graph model: there is a graph
property that, when testing an N-vertex graph, has asymptotically maximal Q(N?) query
complexity, even for quantum algorithms. Here, the property considered is not a natural
one, it was described in [GKNR12, Appendix A] for proving the lower bound in the classical
setting. We adapt their proof to prove the following statement.

Theorem 4.1.5 (Restated in Theorem 4.6.1). There is a graph property in the dense model
that its property testing requires quantum query complexity Q(N?).

4.1.4 Technical overview
Subgraph-finding algorithm

We start by describing how to prove the upper bound result of Theorem 4.1.1 for testing
k-source-subgraph-freeness. We view the problem as a generalisation of the problem of
finding k-collisions and adapt an existing quantum algorithm for the latter problem. In
[LZ19], an algorithm is given for finding k-collisions in length- NV sequences of integers that
contain (2(N) k-collisions (e.g. k-to-1, or random sequence with appropriate parameters).
Their algorithm generalises the well-known collision finding algorithm of [BHT98]. On a
high level, the [LZ19] algorithm first finds several 2-collisions using Grover search like in
[BHT98], extends some of them to 3-collisions in a similar way, and so on until a k-collision
is found.

On the one hand, instead of random inputs, we consider the problem in the property
testing context; and on the other hand, we generalise collision-finding to subgraph-finding.
As a first step let us look at what happens when we consider the property testing version
of the k-collision problem. In order to be able to use the algorithm of [LZ19], we have to
prove that if a length- N sequence is far from k-collision-freeness then it contains many k-
collisions. Notice that the collisions are not necessarily distinct: if the input only contains
the same integer IV times, it only contains one huge collision, but it is still e-far from k-
collision-freeness for any ¢ < 1 —k/N. Thus, what we need to show is that there are (V)
many disjoint size-k sets of indices such that for each set, the sequence contains the same
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character at the positions of the set. This statement is true because otherwise, by modifying
all the characters that are in positions contained in a set (o(/N) characters in total), we could
get a k-collision-free sequence which contradicts being far from k-collision-freeness.

When we make the second step of turning to testing subgraph-freeness, we need to
prove a variant of this statement: if an N-vertex graph G is far from H-freeness (for some
constant-sized subgraph H) then it contains Q2(/N) many “source-disjoint” H-subgraphs.
This means that there are (2(/NV) many such H-subgraphs in G that the set of vertices in the
source components of each /-subgraph are disjoint. We prove this fact in Proposition 4.3.2
and this allows us to further generalise the approach of [LZ19]: first find several partial so-
lutions where only a few source components of an H -subgraph are explored, and gradually
extend these (using Grover search coupled with constant-depth breadth first search) until
a complete H-subgraph is found.

Notice that this way our algorithm finds an H-subgraph in GG promised that G is far
from H-freeness. This task is at least as difficult as property testing, where the algorithm
only has to distinguish whether G is H-free or far from any H-free graph. So, our algorithm
provides an upper bound on the property testing variant of /-freeness.

Collision-freeness lower bound

Now we will discuss our approach to proving the lower bounds of collision-freeness
(Theorem 4.1.2) and k-source-subgraph-freeness (Theorem 4.1.3). We first give a simple
reduction from k-collision-freeness to k-star-freeness, which is a special case of k-source-
subgraph-freeness. This way, it is enough to prove a lower bound on testing k-collision-
freeness, and it implies the same result on testing k-source-subgraph-freeness. Since our
lower bound approach crucially depends on the (dual) polynomial method, let us start by
briefly discussing it.

The (dual) polynomial method As we discussed in Section 2.5.4, the polynomial
method is a common way to prove quantum query complexity lower bounds. As a
reminder, it relies on the fact that the acceptance probability of a T-query bounded-error
quantum algorithm is a polynomial of degree at most 27" [BBC*01]. This way, for proving
a quantum query complexity lower bound on calculating a function f, it suffices to argue
that any approximating polynomial of f has large degree. One of the key properties that
such lower bounds exploit is the symmetry that the function f may exhibit, such as
invariance under some permutation of the input. For example, the first tight lower bound
of Q(n'/?) for the collision problem was proved in this way [AS04].

The polynomial method can be written in the form of a linear program, of which one can
take the dual. By weak LP-duality, when using this dual characterisation for proving a lower
bound on function f, one needs to provide a “witness” of the approximating polynomial’s
high degree, say A. This witness is called the dual polynomial 1) and, in the easiest case of
total Boolean ' functions f : {—1,1}" — {—1, 1}, it needs to satisfy three properties.

(i) High correlation with f: Y f(z)¥(z) > 4.
(ii) Normalisation: ) _|¢(x)| = 1.
(iif) Pure high degree A: > p(z)y(x) = 0, for every polynomial p with degree < A.

1. In this chapter, we use {—1, 1} where —1 corresponds to the “true value”.
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Above, the summations are all over z € {—1, 1}"™.

When the function f is partial, i.e. only defined on a subset D C {—1,1}", there is
some subtlety that could be handled in two ways (or even in a mixture or both): zero-out
the dual polynomial outside D (corresponding to “unbounded degree”); or rewrite condition
(i) accordingly (corresponding to “bounded degree”):

(") High correlation with f: >° ,, f(z)¢(x) — > op [¥(2)] > 6.

Collision function The paper of [BKT20] also used the dual polynomial method for
proving quantum lower bounds for many problems, most of them being open before that
work. Similarly to that paper, we need to take several steps to be able to use the dual
polynomial method for the problem of property testing k-collision-freeness. This problem
was not addressed in [BKT20].

One of the main conceptual ideas in [BKT20] is to re-formulate the problem we study as
a composition of two simple Boolean functions. In that paper, powerful techniques are also
developed in order to design dual polynomials for simple functions that can be composed.
A common way of composing dual polynomials (called dual block composition) dates back
to [SZ09, Lee09, She13], but [BKT20] provides new tools for handling it efficiently. We are
going to reuse some of them, and also extend one in a way.

The first step is to find the right problem that can fit in the framework. We introduce
a partial symmetric function F defined on input strings s = (s1,...,sy) € [R]". The
domain of F' corresponds to the following promise: either F' has no k-collision, or it has
many k-collisions occurring for distinct values. More formally,

-1 if no integer occurs at least £ times in s,
F(s)=<1 if more than R distinct integers occur at least &k times in s,

undefined otherwise.

This partial function is not a property testing problem, however it corresponds to a special
case of testing k-collision-freeness, which is therefore enough to prove lower bounds.

Binary encoding Now we encode the input string s = (s1,...,sy) € [R]" into binary
variables z; ; storing whether s; = j, as in [Aar02]. Doing so, starting from the function F
above, we end up with a function f defined over binary variables satisfying several sym-
metries, under the permutation of either ¢ or j in z; ;.

Moreover, the symmetries of f allow the extension of the initial function f from the
very restricted set of binary inputs corresponding to valid strings, to the more general set
of binary inputs of Hamming weight N [ABRW16]. With further technicalities one can also
extend f to all binary inputs of Hamming weight at most N [BT20]. This is fundamental
because instead of being forced to zero out the dual polynomial outside the domain of f,
we only need to do so on inputs of Hamming weight higher than N. Using the symmetry
of f, it can be shown that a lower bound on this modified, Boolean version implies a lower
bound on the original £-collision problem.

This way we end up with two promises on binary-encoded input domain. The first one
comes from the function F’ itself: we have the promise that the input contains either no k-
collision or it has many of them at different values. The second promise is the consequence
of the encoding: we want the binary encoding to have Hamming weight at most N. Let
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D denote the set of binary strings satisfying both promises, and let H<y denote the set
of binary strings with Hamming weight at most N. For this case, we use the “double-
promise” version of the dual polynomial method, where, in order to prove that every J-
approximating polynomial of f has degree at least A, the dual polynomial has to satisfy
four conditions, where the fourth one corresponds to zeroing out ) on large Hamming
weight inputs [BKT20].

(") High correlation with f: > _, f(z)¢(x) — erHSN\D |(z)] > 9.

(ii) Normalisation: ) _|¢(x)| = 1.

(iif) Pure high degree A: " p(x)y(z) = 0, for every polynomial p with degree < A.
(iv) No support on inputs with large Hamming weight: ¢(z) = 0, for every = ¢ H<y.

Composition Coming back now to the definition of our Boolean function f, one can
rewrite it as a composition of simpler functions: GapOR}, ® THRE;. Remember that by
composition, we mean (g ®h)(z) = g(h(xy),...,h(z,)) (where x = (21, ..., x,) and each
x; = (21,4, %2, .., TN,;) is a binary vector of dimension V) and the domain is restricted
to bit strings of Hamming weight at most N. Above, THR; is the threshold function: it
is —1 if the input bitstring contains at least £ many —1 (true) values, and is 1 otherwise;
and GapORY}, is the gap version of OR, which is 1 if the input only consists of 1s, —1 if the
input contains at least 72 many —1 values, and is undefined otherwise.

In order to give a dual polynomial for this composed function, we start from a dual poly-
nomial for each part of the composition (¢ and /), which were already given in [BKT20]
(in different contexts). Then we use a known way [SZ09, Lee09, Shel3] of composing dual
polynomials called the dual block composition, which provides a nearly good dual polyno-
mial ¢ * 1) for GapOR}), ©® THRY,. Indeed, by construction, the normalisation (ii) and the
pure high degree (iii) are guaranteed. However, the issue is that it is not 0 on bitstrings of
large Hamming weight thus (iv) is not satisfied, and the high correlation (i’) still has to be
proved.

To fix (iv), we use another result of [BKT20] which provides another dual polynomial ,
that is close to ¢ x ¢/ and that is 0 on inputs having Hamming weight larger than N. Also,
it only changes the pure high degree by a polylogarithmic factor. Now the only remaining
task is to prove a large enough correlation (i’) of ¢ x ¢ and GapOR}, ® THRY,, so that ¢
still has high enough correlation. This high correlation proof (Lemma 4.4.23) is the most
technical part of this chapter.

High correlation: proof of Lemma 4.4.23 The statement we prove is the following
high correlation bound:

Y (% )(x) - (GapOR}, © THRY ) () = > [(¢+¢)(x)]| > 9/10.

zeD x¢D

In the proof of this lemma, we use Proposition 4.4.21 that is a more general statement of
some techniques used in several proofs of [BKT20]. But then we need to diverge from
their proof because it crucially relies on a certain one-sided error property (in the sense of
[BKT20, Lemma 6.11]) of the inner function of the composition, which is the OR function
in their case. Our inner function is the threshold function, which does not satisfy this
property, so we have to use some other properties of the dual polynomials in our proof.
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This different proof technique, in the more difficult, two-sided error setting, could be a step
towards obtaining a more general lower bound technique.

3-colourability lower bound

Let us now discuss our approach to proving the linear lower bound on the quantum
query complexity of testing 3-colourability (Theorem 4.1.4). Before proceeding to present
our approach, let us briefly discuss the classical lower bound of testing 3-colourability.
To prove the classical lower bound of 3-colourability, the authors in [BOT02] first studied
another problem called E(3, ¢)LIN-2, a problem related to deciding the satisfiability of a
system of linear equations. More formally, E(3, ¢)LIN-2 considers a system of linear equa-
tions modulo 2, where each equation has 3 variables and every variable appears in at most
c equations. Given such a system of linear equations, the goal is to distinguish if it is sat-
isfiable, or at least some suitable fraction of the equations need to be modified to satisfy it.
In [BOTO02], is was proved that (V) classical queries to the system of linear equations are
necessary for testing E(3, ¢)LIN-2.

After this, they designed a reduction from E(3, ¢)LIN-2 to 3-colourability such that sat-
isfying instances of E(3, ¢)LIN-2 are reduced to 3-colourable graphs, and far from satisfiable
instances of E(3, ¢)LIN-2 are mapped to far from 3-colourable graphs. Combining these two
arguments, in [BOT02] it was proved that (V) classical queries are necessary for testing
3-colourability for bounded degree graphs.

The authors in [BOT02] used Yao’s minimax method [Yao77] to prove the linear lower
bound in testing E(3, ¢)LIN-2. In particular, they designed two distributions Dy and D,
such that the systems of linear equations in Dy are satisfiable, whereas the systems of
linear equations in D,, are far from being satisfiable. A crucial ingredient of their lower
bound proof is a construction of a system of linear equations (represented as a matrix)
that are far from being satisfiable, but any § N rows of the matrix are linearly independent.
Hence, any subset of §/V entries of the matrix will look uniformly random, and therefore
hard to distinguish from a satisfiable instance.

It is a known fact that distinguishing between a uniformly random string and a /-wise
independent string is hard for quantum algorithms (see e.g. [ADW22]). Using this result,
we can construct suitable hard instances for E(3, ¢)LIN-2, such that testing E(3, ¢)LIN-2
remains maximally hard (requires Q(/N) queries) for any quantum algorithm. Combining
this hardness result with the reduction from E(3, ¢)LIN-2 to 3-colourability, we finally prove
that (/N) quantum queries are necessary for testing 3-colourability. We formally prove
this in Section 4.5.

Later, in [YI10a], the authors used various reductions to 3-colourability to argue that
several other important problems, including testing Hamiltonian Path/Cycle, approximat-
ing Independent Set/Vertex Cover size etc., are maximally hard to test in the classical model.
As a corollary of our quantum lower bound, we also obtain maximal quantum query com-
plexity for these problems.

A lower bound in the dense graph model

We show that there is a property in the dense graph model, that testing it has essentially
maximal, Q(N?) quantum query complexity for N-vertex graphs (Theorem 4.1.5). The
property is the same described in [GKNR12, Appendix A]. On a high level, the construction
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of this property starts by taking a code C C {0, 1}" of appropriate size, such that taking
a uniformly random X € C is {-wise independent for some ¢ € {2(n). Codes of this kind
exist in the literature, and this property implies that {2(n) quantum queries are necessary
for distinguishing a uniformly random X € C from a uniformly random Y € {0,1}". In
the following, the goal is to turn this into a graph property.

To a bitstring X € {0,1}" we assign a graph G of N vertices, where n = (g), and
X is viewed as the description of the adjacency matrix of (;. Since we want to obtain a
graph property, we will need to ensure invariance under graph isomorphism. But we also
want to be able to recover the original bitstring X from the final graph, and for this, we
add a gadget to (G1, which results in graph GGo. Now we take a random permutation of the
vertices of (G5 to get the final graph (5. The hard-to-test graph property P is the set of
graphs we can obtain at the end of this construction if we start with a bitstring X € C.

The proof of this property’s hardness uses Yao’s principle [Yao77]: we construct two
distributions of graphs that are hard to distinguish. In particular, graphs in Dy, are obtained
by taking a uniformly random X € C, and putting it into the above construction. D, is
defined similarly, but we start with a uniformly random X € {0, 1}". Graphsin Dy, always
satisfy P, and graphs in D, are far from P with high probability. If an algorithm could
distinguish between Dy.s and D,,, it would also distinguish a uniformly random string
from an Q(n)-wise independent one, but this is known to require Q(n) = Q(/N?) quantum
queries.

4.1.5 Open problems

Our work raises several important open questions. First, there is still a gap between our
lower and upper bound on the quantum query complexity of testing k-collision-freeness
and k-source-subgraph-freeness. In [MTZ20], the authors keep using the dual polyno-
mial method to improve the lower bound of [BKT20] for the k-distinctness problem. They
achieve this by using a slightly different dual polynomial for THR%,, where they allow more
weight on the false positive inputs. This makes it impossible to prove the high correlation of
the dual and the primal function, so they use a modified block composition. Our technique
might be combined with this other approach to improve our lower bound to Q(N/2-1/(4%)),

The authors in [ABRW16] stated it as an open question if one could use a variant of the
proportional moments result of [RRSS09] to prove lower bounds on quantum algorithms.
We leave this question open, and conjecture that a similar result holds in the quantum

setting with a lower bound of 2 (N %(1_%>>. This work may be considered as a proof of

this conjecture for the special case of k-collision-freeness, and we hope that it will serve as
a step towards proving it in general.

In [CPS16], it was proved that if a graph property can be tested with O(1) queries in
the bidirectional model, then it can be tested using O( N'~%()) queries in the unidirectional
model. It would be very interesting to investigate if it also implies a quantum tester with
query complexity say O(N/2-%1),

Just like the BHT algorithm for collision finding [BHT98], our subgraph-freeness test-
ing algorithm in Section 4.3 requires QRACM. There is another collision finding quantum
algorithm that avoids the QRACM assumption of BHT, but its time complexity is higher:
O(N?/) instead of O(N'/?) [CNPS17]. We are curious whether a something similar is
possible for our problems: still beating classical algorithms while not using much quantum
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memory.

Connection to distribution testing

For further motivation and open questions, we would like to point out how the problems
and models presented in this chapter relate to the property testing of distributions. In
distribution testing, we have sampling access to an unknown distribution D and we have
to decide if D satisfies a property or it is far from any distribution that satisfies it. Let us
consider D = {pi,...,pr} with } ;5 p; = 1, meaning that a sample from D gives i
with probability p; for all i € [R]. There is a model, where we assume that every p; is an
integer multiple of 1/N, and sampling access to D is simulated as query access to a string
of integers (sy, ..., sy) € [R]", where the frequency of each character i € [R] is f; = Np;
and the string is randomly permuted. This way, a property of distributions can be translated
into a symmetric property of integer strings, which is the same model we had in the case
of collision-freeness testing.

A very common task in distribution testing is to decide whether two distributions D; =
{p1,...,pr} and Dy = {q1,...,qr} are the same or they are e-far from each other. The
distance measure used is the total variation distance (or statistical difference), i.e. D; and
D are e-farif ) 7, [pi — qi| > €. There are two main settings for this problem.

— Unknown-Unknown (U-U): the algorithm has sampling access to both distributions
D and Ds, so this is the case described above.

— Known-Unknown (K-U): the algorithm knows D; and it has sampling access to the
unknown distribution Dj. As uniform is known to be a maximally hard known dis-
tribution, this model is also referred to as uniformity testing, where we want to dis-
tinguish Vi € [R] : ¢; = 1/Rfrom } ;. |¢; — 1/R| > &.

As for any property testing problem, we can consider the tolerant version of these prob-
lems: distinguish whether D; and D, are ;-close or e5-far in total variation distance (for
some €1 < €5). The following table contains the known results about the classical and quan-
tum query complexity of property testing distributions in the different settings, ignoring
the dependence on the proximity parameter(s). We can see that the classical results are all
essentially tight.

Classical Quantum
non-tolerant tolerant non-tolerant tolerant
KU | O(/N) |©(N/logN) O(N/3) O(V'N)
U-U| O(N?*3) | ©(N/logN) | O(v/N)and Q(N'/3) | ©(V/N)

Table 4.1 - Known bounds on the query complexity of distribution testing.

Let us focus on the quantum results. The non-tolerant K-U case for R = N is the same
problem as testing collision-freeness: translated to the integer string setting, a uniform
distribution corresponds to a string where each integer appears exactly once, so it is a
permutation; and a distribution that is e-far from uniform corresponds to a string where
the frequencies satisty » ;. (g [fi — N/R| > €N, ie. it is e-far from a permutation. Thus,
both the upper and lower bounds follow from those of the collision problem [BHT98, AS04,
Kut05].
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In [BHH11], the authors give an O(v/N) algorithm for approximating the statistical
distance between two unknown distributions and thus solving the tolerant U-U case, and
all the other cases that are special cases of it. In [BKT20] a lower bound of Q(v/N) is
given for the problem they call “statistical difference from uniform” that corresponds to the
tolerant K-U case, and the lower bound carries over to the more general tolerant U-U case.

An important open question in quantum distribution testing is to give a better algorithm
or lower bound in the non-tolerant U-U case. Several of the existing results in distribution
testing use models like we do in this chapter. In particular, our lower bound in Section 4.4 is
inspired by the mentioned result of [BKT20], and we hope that our results may help future
research to resolve this open problem.

4.2 Preliminaries

4.2.1 Notations and basic definitions

When dealing with Boolean variables, we will usually use b € {—1,1} instead of ' €
{0, 1}. We can get to one from the other easily with the mapping b = 1 — 2V, or its inverse,
which means that —1 is going to be treated as the “true” or “accepting” value. The reason
forusing {—1, 1} is that when dealing with dual polynomials it is easier to use this notation.

We denote by 1" the length-n binary vector made only of 1s, and respectively —1". The
Hamming weight |z|g of © € {—1,1}" is then defined as the number of —1s in z, that is
lz|lp = {i € [n] : &; = —1}|. Let HZ, = {z € {—1,1}" : |z|g < w} denote the set
of length-n binary vectors with Hamming weight at most w. For any = € R, sgn(z) = 1
when z > 0, and —1 otherwise.

For a polynomial p, let deg(p) denote its degree. Remember that the composition
fo©g:{-1,1}"" — {—1,1} of two Boolean functions f : {—1,1}" — {—1,1} and
g : {-1,1} — {—1,1} is defined as (f © g)(z) = f(g9(z1),...,9(x,)) where
x = (x1,...,x,) witheach z; € {—1,1}™

Finally, throughout this chapter, notations O(+) and §)(+) will be hiding the dependencies
on parameters ¢, k and d that we consider to be constants.

4.2.2 Query complexity on graphs

As a reminder, in the undirected bounded-degree graph model, we have query access to
the adjacency list of an undirected graph G = (V, F) with maximum degree d, represented
as an oracle Og : V x [d] = VU{L}. Forany v € V and i € [d], Og(v, i) returns the i-th
neighbour of v if it exists and | otherwise.

For bounded-degree directed graphs, there exist two query models. In the bidirectional
model, we have access to both the outgoing and incoming edges of each vertex. Corre-
spondingly, it is imposed that both the in- and out-degrees of a vertex are bounded by d.
In the unidirectional model, we can only make queries to the adjacency list of the outgoing
edges, and we impose only that the out-degrees of a vertex are bounded by d. Since in this
work the primary focus will be on the latter model, let us formally define it below.

In the unidirectional bounded-degree graph model, we have query access to the adja-
cency list of a digraph G = (V, E) where the out-degree of every vertex is at most d: for
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all v € V: deg, (v) < dou. This access is represented as an oracle OZ" : V' X [dout] —
V U {L} such that for any v € V and i € [doy), we have the following:

w, if w €V is the i-th out-neighbour of v;
1, deg, . (v) <i.

Og" (v,i) = {

For completeness, we note that in some of the previous work on the unidirectional

model they do impose the degree bound on both the out- and in-degree [CPS16]. This is

mostly because this makes for an easier comparison between the uni- and bidirectional

models, as this way they allow the same set of graphs. In this work we assume that only
the out-degrees are bounded by d.

Breadth-first search (BFS) is one of the most fundamental graph algorithms. It explores
the input graph G = (V, E) layer by layer: starting from a vertex first it explores its direct
neighbours then their neighbours etc. It can be implemented using a queue (FIFO - first in
first out) data structure in the following way.

In the beginning, only the starting vertex is in the queue and only it is marked as ex-
plored. Then we do the following procedure until the queue is not empty: query and add
to the queue each unexplored neighbour of the vertex at the queue head, mark them as
explored and remove the vertex head from the queue. The query and time complexity of
BFSis O(|V| + |E|).

The vertices can also store their BFS-depth: the depth of a vertex v is 1 plus the depth
of the vertex that added v to the queue (and the depth of the starting vertex is 0). This way,
it is possible to run BFS up to some limited depth ¢: vertices that would have depth larger
than ¢ are not added to the queue and the algorithm can terminate before exploring the
whole graph: it only explores the /-neighbourhood of the starting vertex. If the depth limit
¢ and the maximum degree of GG are both constants, then the depth-¢ BFS algorithm has
constant query (and time) complexity.

4.2.3 Problem definitions

We now define the problems we study and argue about certain relations between them.
While the problems are phrased as total decision problems, ultimately, we will care about
the quantum query complexity for testing the corresponding properties. The complexity is
going to be parameterised by a parameter k. Moreover, the parameter £, the degree bound
d and the proximity parameter ¢, are all considered to be constants throughout this chapter.

Let us start with some definitions that will be useful to define our problems precisely.

Definition 4.2.1 (Source component). Let G = (V, E) be a digraph. A set S C V is called a
source component if it induces a strongly connected subgraph in GG, and in G there is no edge

fromV \ StoS.

Definition 4.2.2 (k-star). A k-star is a digraph on k + 1 vertices and k edges with one centre
vertex, and k source vertices connected to the centre vertex.

We will now state the decision variant of several problems. The “property” correspond-
ing to a decision problem is the set of inputs that should be accepted in the decision problem.
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k-Source-Subgraph-Freeness
Parameter: Graph H of constant size with at most k source components

Query access: d-bounded out-degree directed graph G on NN vertices (unidirectional

model)
Task: Accept iff G is H-free, that is, no subgraph of G is isomorphic to H

In [HS12, PW23], the authors examine the classical query complexity of testing k-
source-subgraph-freeness. They consider the bounded-degree unidirectional model, albeit
with a bound on both the in- and out-degrees.

For proving a lower bound, we will look at a special case of the main problem: k-star-
freeness. Notice that a k-star has k£ source components, hence a lower bound for this
problem implies the same lower bound for the more general k-source-subgraph-freeness
problem.

k-Star-Freeness
Parameter: Integer k > 2

Query access: d-bounded out-degree directed graph G on N vertices (unidirectional
model)

Task: Accept iff G is k-star-free, that is, no subgraph of G is isomorphic to the k-star

For the lower bound on k-star-freeness testing, we are going to use as a “helper problem”
the decision variant of the k-collision problem.

k-Collision-Freeness

Parameter: Integer k > 2

Query access: Sequence of integers s = (sy,...,sy) € [R]Y

Task: Accept iff s is k-collision-free, i.e. there isno iy, ... i, € [N] with s;, =--- = s;,

As discussed in the introduction of this chapter (Section 4.1.2), very little was known
about the property testing version of this problem prior to this work. We only know the that

the complexity is ©(N'/?) when k = 2, and it is between Q(N'/?) and O (Né(lﬂ“l—l)>
for larger k.

Reduction from k-collision-freeness to k-star-freeness Now we are going to prove
that testing k-collision-freeness can be reduced to testing k-star-freeness (or more generally
to testing k-source-subgraph-freeness). Thus, a lower bound on testing k-collision-freeness
yields a lower bound on testing k-source-subgraph-freeness. Also, an algorithm for testing
k-source-subgraph-freeness yields an upper bound on testing k-collision-freeness.

While the proof goes similarly to [HS12, Theorem 3], our reduction is not identical
because we have a slightly different “helper problem”. Since they consider that the in-degree
of vertices to be bounded as well, for the collision problem, they assume that the sequence
does not contain any collision of size larger than k (defined as k-occurrence-freeness).

Proposition 4.2.3. The problem of e-testing k-collision-freeness of a sequence from [R]" can
be reduced to d(]ff—]XR)-testing k-star-freeness of an (N + R)-vertex sparse directed graph with
out-degree bound d > 1.
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Proof. Let us assume that we have an algorithm that solves the k-star-freeness testing prob-
lem on graphs with out-degree bound d > 1, and we want to use it to test k-collision-
freeness of a sequence s = (sy,...,sy) € [R]". We construct a digraph G that has N
outer vertices uy, ..., uy and R inner vertices vy, ..., vg; edges only exist from the outer
vertices towards the inner ones such that u; is connected to v; iff s; = j. Observe that the
maximum out-degree in G is 1, so its out-degree is bounded by d for any d > 1.

It is clear that s is k-collision-free iff G is k-star-free. On the other hand, if s is e-far
from k-collision-freeness, it implies that more than ¢/N edges have to be deleted in G to

make it k-star-free. Thus G is ¢’ = T ng]i i -far from k-star-freeness. ]

4.3 Quantum algorithm for testing subgraph-freeness

In this section, we prove that there is a quantum speedup for testing H-freeness in
directed graphs with d-bounded out-degree, for any graph H that has k source components.
For large but constant k, the speedup is nearly quadratic. This problem was studied in
[GRO2] in the classical setting. Our algorithm can be seen as a generalisation of the one
in [LZ19] to graphs and to the property testing setting. Let us start with the definition of
source-disjointness which will be used in the analysis of our algorithm.

Definition 4.3.1 (Source-disjointness). Let G be a directed graph such that it contains two
subgraphs Hy and H,. We say that H, and H, are source-disjoint if the union of the source
components of H; is disjoint from the union of the source components of Ho.

Moreover, we need to prove the following simple proposition. It shows that if G is far
from being H-free, then it contains many source-disjoint copies of H, that is, copies of H
that are source-disjoint subgraphs of G.

Proposition 4.3.2. Let H be an h-vertex graph with k source components. Assume that a d-
bounded out-degree directed graph G on N vertices is c-far from H-freeness. Then G contains
at least e N/h = Q(N) source-disjoint copies of H.

Proof. We prove the result by contraposition. Consider a maximal set M of source-disjoint
copies of H in G and assume that | M| < e N/h. Let U denote the union of all the vertices in
the source components of the copies in M. This implies that if one deletes all the outgoing
edges of all the vertices in U, then G becomes H-free. Indeed, if there remained an H-copy
then all its source components are disjoint from )’ (as in a source component every vertex
has at least one outgoing edge), contradicting the fact that M/ was maximal.

Since |U| < |M| - h, the number of those deleted edges is at most |U|-d < |[M| - hd <
eNd. Therefore, the resulting graph is both /{-free and e-close to the original graph G.
This proves the contraposition of the proposition. [

4.3.1 The algorithm for £ = 2

To illustrate the algorithm, we first consider the £ = 2 case to build our intuition. In this
case, our algorithm generalises the BHT algorithm for collision finding [BHT98] to graphs.
The high-level idea is that if we manage to sample a vertex from each of the two source
components of an H-subgraph (a collision) then by querying their “surroundings” we will
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discover the H-instance. In the following, we set h = |V (H )|, number of vertices in H. We
use the shorthand BFS for breadth-first search.

1. Sample a uniformly random vertex subset S of size t = O(N'/3) in G. Perform a
depth-h BEFS from every vertex in S.

2. Perform Grover search over the remaining vertices V\S in the following way. A
vertex v is marked if there exists another vertex u € S such that v and v are from the
2 different source components of an H subgraph of G.

3. If any occurrence of H in G is found, output Reject. Otherwise, output Accept.

Note that if G is H-free, then the above algorithm will always accept. Now we need
to argue that if G is e-far from being H-free, then with constant probability the above
algorithm will find a copy of H and thus reject.

By Proposition 4.3.2, with high probability, a constant fraction of the ¢ vertices in S are
part of a source component in source-disjoint /7-subgraphs of GG. For such vertices, the BFS
in step 1 will discover the entire source component, as well as all other vertices reachable
from that source component in H. Then, in step 2, we search for a vertex that is in the
remaining source component of such an instance of H that we already partly discovered.
This can be verified by doing a depth-/ BFS from it and checking if this completes an H-
instance with one of the previously sampled vertices’ neighbourhoods. As we mentioned,
by Proposition 4.3.2, with high probability there are {2(¢) many marked vertices. This proves
the correctness of the algorithm.

Finally, we bound the algorithm’s query complexity. Step 1 makes O(t) = O(N'/3)
many (classical) queries. In step 2, we use Theorem 2.5.4 and Remark 2.5.5: checking
whether a vertex is marked requires running a depth-h BFS from it, which costs ¢ = O(1)
queries. We argued that there are ((¢) many marked vertices, so Grover search makes
O(\/N/t) = O(N'/?) quantum queries.

Note that, just like in the original BHT algorithm, we need QRACM (Quantum Random
Access Classical Memory) to perform step 2, because Grover search needs to access the
results of the classical queries of step 1 in superposition. In particular, the oracle of Grover
search, that tells which elements are marked, will be implemented as a QRACM.

4.3.2 The algorithm for general £

We are now ready to state our general upper bound result. The algorithm and proof
follow the same lines as the k = 2 case.

Theorem 4.3.3 (Restatement of Theorem 4.1.1). Let H be a digraph of constant size with
k source components. The quantum query complexity of testing H-freeness of an N -vertex

graph with bounded out-degree in the unidirectional model is O (N% <12’“l—1>>

Proof. In order to extend the £ = 2 case described above to larger k, we first try to find
many partial H-instances with £ — 1 source components found, and then extend one of
them to a complete /-instance. We present a brief description of our algorithm below,
where h is the number of vertices of H:

1. Sample a uniformly random vertex subset &7 in G of size t;. Perform a depth-h BFS
from every vertex in S;. Let S| = ;.
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2. For iterations 7 = 2 to & — 1, do the following:

(a) Perform Grover search t; times on the vertices V' \ S!_, in the following way. A
vertex v is marked if there exist i — 1 other vertices u; € S; for each j € [i — 1]
such that uy,...,u;—; and v are from ¢ different source components of an
subgraph of GG. If we do not find ¢; vertices like this, output Reject, otherwise
let S; denote the set of the vertices v that we found.

(b) SetS! =S/, US..

3. Perform Grover search on V'\S;_, to find a complete H-instance. Le., a vertex v is
marked if there exist k — 1 other vertices u; € S; for each j € [k — 1] such that
Ui, ..., Uux—1 and v are from the £ different source components of an H subgraph of

G.

4. If any occurrence of H in G is found, output Reject and terminate the algorithm.
Otherwise, output Accept.

The correctness proof is similar to the £ = 2 case. Proposition 4.3.2 tells us that in S; there
are ()(t1) many vertices that are from a source component of an H-copy. Because of the
source-disjointness of the H-copies, when ¢ = 2, there are (2(¢;) many 1-partial solutions
that can be extended to a complete H instance by disjoint remaining source components.
As Grover search provides uniformly random marked elements, a constant fraction of the
1o many 2-partial solutions are actually extendable to H in a similar, disjoint way. This
continues to be true in each iteration: (with high probability) a constant fraction of the ¢;_;
many (i — 1)-partial solutions are extendable to complete H instances by disjoint remain-
ing source components. This way, the last step is going to find an H-subgraph with high
probability.

To bound the query complexity, first note that in every application of Grover search,
checking whether a vertex is marked (depth-h BFS) takes O(1) queries. The first itera-
tion’s Grover searches find ¢, partial H-instances with 2 of its source components found,
which takes O(ty1/N/t1) queries (by Theorem 2.5.4). Similarly, for i-th iteration there
are €)(t;_1) marked elements (see the argument in the previous paragraph), so the algo-
rithm performs O(t;1/N/t;_1) quantum queries for every i € [k — 1]. Finally, finding
one complete H-instance costs O(y/N/t;_1) queries. Thus, the total query complexity is
Oty + Zf:_ll tiv1/N/t;) with t; = 1. Similar to the multi-collision algorithm in [LZ19,

ok—i_4

Section 3], we can equate all terms by setting ¢; = @(N k-1 ), which yields the final

quantum query complexity O (N : (1_ﬁ) ) .

We note that there is no need for a polylog(/NV) factor in the query complexity, which
could come from a commonly used way to boost up the success probability of Grover’s
algorithm. This stems from two observations. First, consider the case where K among N
elements are marked, with a given lower bound L < K, and we wish to find R < L such
elements. If R < L, then (say) 100 R repetitions of Grover should return at least R marked
elements with probability at least 2/3 while making O(R+/N/L) queries, without extra
log-factors. This is because one can simply ignore any unsuccessful Grover runs. In our
case we set R = t;,1 < L = t;. Finally, since there are k iterations in the algorithm and &

is constant, a factor of log £ would not add up to the query complexity of our algorithm in
terms of V. []
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4.4 Collision-freeness lower bound

As discussed in Section 4.2, we are going to prove a lower bound on the problem of
testing k-collision-freeness.

Theorem 4.4.1 (Restatement of Theorem 4.1.3). Let Fk > 3 and
0 < e < 1/(4"1720(2k)*/?]) be constants. Let N be a large enough positive integer. Then

the quantum query complexity of property testing of k-collision-freeness of a sequence of
integers S = (s1,...,5x) € [N]™ with parameter ¢ is Q(N'/>=1/CF) /1n* N),

The proof of the theorem is at the end of Section 4.4.3. Observe that Theorem 4.1.2 is
implied by Theorem 4.4.1 and the reduction in Proposition 4.2.3. Our proof mostly follows
the structure of [BKT20, Section 6.1], and in particular, it uses the notion of dual polynomi-
als for non-Boolean partial symmetric functions. Our main technical contribution in this
section is the proof of Lemma 4.4.23, because the corresponding proof in [BKT20] crucially
relies on a fact that does not hold for our problem. We will discuss it in detail below.

In the following, we first state some general results related to the polynomial method
for non-Boolean functions, then we use these results for our problem to state the exact
statement that we prove in the technical part.

4.4.1 The (dual) polynomial method

For Boolean functions We consider a property on Boolean vectors as a function f :
D C {-1,1}" — {—1,1}. Since the work of [BBC*01] it has been known that the ac-
ceptance probability p(z) of a T-query bounded-error quantum algorithm on input = € D
is a polynomial of degree at most 27" (see Section 2.5.4). Thus, since we went from {0, 1}
to {—1, 1}, the polynomial (1 — 2p(z)) must be a good approximation of f. Observe that
(1 — 2p(x)) remains bounded outside D since p(x) remains a probability defined by the
algorithm, with no constraint.

In order to formalise this, we first define the notion of bounded approximate degree of
a partial Boolean function (compare to Definition 2.5.1 for total functions), and then relate
it to its query complexity.

Definition 4.4.2 (Bounded approximate degree). Let f : D C {—1,1}" — {—1,1} and
d > 0. A polynomialp : {—1,1}" — R é-approximates f on D if

VeeD: |f(x)—p(z)|<d and Vre{-1,1}"\D: |p(z)| <1+,

Moreover, the bounded J-approximate degree bdegs(f) of f on D is the smallest degree of
such a polynomial.

The following lemma connects quantum query complexity and approximate bounded
degree (compare to Theorem 2.5.2 for total functions).

Lemma 4.4.3 ((BBCT01, AAI"16]). Let f : D C {-1,1}" — {—1,1} andd > 0. If
a quantum algorithm, having query access to any input x € D, computes f(x) with error
probability at most 0 using T' queries, then there is a polynomial of degree at most 2T that
20-approximates f on D.
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In particular, this implies that the quantum query complexity for computing f with error
J is at least bdeg,;(f)/2, and so we will focus on proving lower bounds on the approximate
bounded degree.

We now turn to a dual characterization of this polynomial approximation. This method
of dual polynomials dates back to [Shel1, SZ09] for initially studying communication com-
plexity. Below, we refer to some results stated in [BKT20] for studying query complexity.

Definition 4.4.4 (Pure high degree). A function ¢ : {—1,1}" — R has pure high de-
gree at least A if for every polynomial p : {—1,1}" — R with deg(p) < A it satisfies
> vef—1,13n P(2)¥(x) = 0. We denote this as phd(¢) > A.

One can observe that phd(¢)) > A is equivalent to the fact that all the monomials of
are of degree at least A. Then by weak LP duality, we get the following result.

Theorem 4.4.5. [BKT20, Proposition 2.3] Let f : D C {—1,1}" — {—1,1} andd > 0. Then
bdegs(f) > A iff there exists a function v : {—1,1}" — R such that

v flx) - > )] >4 (4.1)

z€D ze{-1,1}"\D

[l = > @) =1 (4.2)
ze{—1,1}m

phd(y) > A. (4.3)

Now we are going to discuss how to extend these results to non-Boolean functions,
which is the interesting case for us.

For non-Boolean partial symmetric functions We now consider a property of a se-
quence of integers as a function F' : D C [R]) — {—1,1}. The symbol 0 will play a special
role that will be exhibited later. Unfortunately, one cannot just take the polynomial of those
integers. The standard approach (see [Aar02]) is to encode s = (sy,...,sy) € [R]Y into
binary variables © = (2, ;)ic(vje(r, € {—1, 1}V encoding whether s; = j as follows:
z;; = —1ifs; = j,and z; ; = 1 otherwise. Let HZV(RH) C {—1, 1}V(E+D be the set of all
possible encodings of vectors s, that is for every i € [IV] there is exactly one j € [R], such
that Ty = —1.

This way, we can represent I’ as a function F}, : D, — {—1, 1} where D, C HéV(RH) is
the set of valid encodings of D. More precisely, each € D, satisfies two constraints: (1)
S HéV(RH); and (2) z encodes some s € D. Since only inputs x € HbN(RH) correspond to
possible input sequences of an algorithm, the polynomials derived from a quantum query
algorithm might not be bounded outside of that set. This implies a slight modification on
the definition of approximate degree, in order to relate it to query complexity as in [Aar02].

But before doing this, we are going to relax the constraints on the domain D, in the
case of symmetric functions, while we decrease its dimension. When F' is symmetric (i.e.
F(s) = F(s omy) for any permutation 7y of [V]), one can instead define a function F<y
with weaker constraints by removing the variables corresponding to the symbol 0. Define
HYE as the set of length-(N R) binary vectors with Hamming weight at most N. Given
any v € HY we define its frequency vector z(z) = (29,21, ..., 25) With z; = #{i :
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xy; = —1},for1 < j < R,and 20 = N — 2 — ... — zp. From the vector z(x), one can
define a valid sequence of integers s(x) € [R]{’: it can be any sequence from [R]{’ that has
frequency vector z(z). Now we can define F< on domain D« as

Doy ={z € HYY :s(x) € D} and Foy(z)= F(s(x)).
In fact, for the spec1al case of total symmetric functions ', we can transform F} on H (B+1)
to F<x on HY% due to the symmetry of F.
In [Amb05] it was proved implicitly that for symmetric £, both F}, and F<y variants
are equally hard to approximate by polynomials. We now define the appropriate notion

of approximate degree for F< and relate it to the query complexity of F' as in [BKT20,
Theorem 6.5].

Definition 4.4.6 (Double—promise approximate degree). Let F' : D C [R ] — {—1,1} be
symmetric and § > 0. Define HYE} C {—1,1}"® and Fey : Doy C HYE — {—1,1} as
above. A polynomial p : {—1 1}NR — R double-promise -approximates F on D if

Vo € Dey @ |Fan(z) —p(z)] <6 and Vo€ HYF\ Doy : |p(z)] <1+0.

Moreover, the double-promise J-approximate degree dpdegs(F<y) of F<y on D<y is the
smallest degree of such a polynomial.

The following lemma connects quantum query complexity and double-promise approx-
imate degree.

Lemma 4.4.7 ([Aar02, Amb05],[BT20, Theorem 3.9]). Let F' : D C [R]) — {—1,1} be
symmetric and § > 0. Define HYE C {-1,1}"® and F<y : Doy C HYE — {—1,1} as
above. If a quantum algorithm computes I’ on D with error § using T queries, then there is a
polynomial p of degree at most 21" that double-promise 25-approximates F<n on D<y.

As for the Boolean case, this implies that a quantum algorithm computing /' with er-
ror  must make at least dpdeg,s(F<y)/2 queries. We can now also take the dual of this
characterization.

Theorem 4.4.8 ([BKT20, Proposition 6.6]). Let F : D C [R ]év — {—1,1} be symmetric.
Define F<y : D<n — {—1,1} as above. Then dpdegs(F<y) > A iff there exists a function
¥ {1, 1}V — R such that

Vo e {~1 1}NR\H<N, () = 0; (4.4)

S v@FN@ - Y @) > (45)
z€D<n veHYF\D<y

||l =1 and phd(y) > A. (4.6)

4.4.2 Preparation

Technically, the problem we use in the proof of Theorem 4.4.1 is slightly more restricted
than k-collision-freeness: we want to distinguish no k-collision from many distinct colli-
sions of size at least &.
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Definition 4.4.9 (Collision function). Let~y € (0, 1). The symmetric function Colhslon]f\, !
~ C [RYN — {—1,1} is defined by CothlonNR(s) = —1 if no integer occurs at

.. k
COlhblOHN s

least k times in s, Colhslonf\,R( ) = 1 if there are more than R distinct integers that occur
at least k times in s, and it is undefined otherwise.

Notice that this problem is not a property testing problem, as the outcome is not deter-
mined based on the distance between inputs. Nevertheless, it is a valid promise problem
and a special case of testing k-collision-freeness, that we use to prove a lower bound on the
other problems of interest.

To prove a bound on the Collision function, we will actually relate it to the composition
of two more elementary functions g © h. Let us define (i) the threshold function THR’]’“\, :
{—1,1}" — {—1,1} which is —1 if the input bitstring contains at least k many —1s, and it
is 1 otherwise; and (ii) the gap version of OR, that is GapOR}, : Dgapory, C {-1,1}F —
{—1,1} which takes value 1 if the input is 1%, —1 if the input contains at least ¥R many
—1s, and is undefined otherwise. We show that the double-promise approximate degree of
GapOR}, © THRY, lower bounds the quantum query complexity of the collision problem.

Lemma 4.4.10. Letk > 3,0 <y < 1, > 0 and ¢ > 2 be constants such that N/c < R <
N/2. If the double-promise 5-approximate degree of GapOR), ® THRA, on domain further

restricted to H iv 1 is at least A, then every quantum algorithm computing Collision ]\}VJ\/, with
error § /2 must require at least A /2 queries.

Before proving this lemma, we prove some helper propositions. In order to apply the
dual polynomial method for partial symmetric functions, we start by proving
that Collisionﬁ}vR, is at least as hard as a very similar problem. We introduce a

“‘dummy-augmented” version dColhslon’;\, w o D C [R]Y — {-1,1} of the

k,
dColhslonN’YR

problem Colhslon]\} » for the purpose of proving Lemma 4.4.10, where now the input
sequence can have integer 0, but those Os are just ignored when they occur. We show that
it is enough to prove a lower bound for this second version.

Proposition 4.4.11. Letk > 3,0 < v < 1 and ¢ > 2 be constants such that N/¢c < R <
N/2. Then dCollision};” ~.r can be reduced to Collisionﬁ}%c.

Proof. An input to dColhslonNR is a sequence s = (sy, ..., Sy) where each s; € [R]o. Let
us define a family of functions 7; that map from [R), to [R'] for R" = R+ [N/2]: T;(s) = s
ifs>0and T;(0) = R+ [i/2].

Notice that (s1, .. ., sy) is free from k-collisions (ignoring collisions of the dummy char-
acter 0) if and only if (T1(s1),...,Tn(sn)) is free from k-collisions, i.e. new k-collisions
cannot be created by this transformation (only 2-collisions but we assume k > 3).

On the other hand, if (sq, ..., $y) contains more than R distinct k-collisions, then so

does (T1(s1), ..., Tn(sn)). Smce vYR > (v/c)N, Collision ) ’7/ will reject. O
The following proposition relates dCollision to GapOR}, ® THRY.

Observation 4.4.12. The domain of GapOR}, ©® THRY is
Deaporgemury, = {2 € {=1, 1}« (THRY (21), ..., THRY (2r)) € H, 5 U{1"}}.
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wherex = (x1,...,zp) with eachx; € {—1,1}V.
The domain of(dCoHiSioni}?R)SN is

_ 77NR
D (dCollisiony ) <N — Hoy N DGapOR;@THRJkV-
Moreover, restricted to the latter domain they are the same function:
(dCollisiony,)<" = GapOR} ® THRY.

We are now ready to give the proof of Lemma 4.4.10.

Proof of Lemma 4.4.10. Using Proposition 4.4.11, instead of Collision];\}%c we can consider

dCollisionﬁ}:YR (with the appropriate parameters) to show a lower bound. By Observa-
tion 4.4.12, we can use Lemma 4.4.7 to relate the query complexity of dCollisionf\}:YR to the
double-promise degree of GapOR}, ® THR}, with domain further restricted to H. ]SV 2O

4.4.3 Main lower bound

Let us fix f = (GapOR}, ® THRE) with domain D = D (Gaporyorary,) (See Ob-
servation 4.4.12). For technical reasons, in the rest of the section, we fix £ > 3 and
N = [20(2k)*/?]R.*

We first define a construction used to compose dual polynomials, which was introduced
in earlier line of work [SZ09, Lee09, She13].

Definition 4.4.13 (Dual block composition). The dual block composition of two functions
¢:{-1,1}" > Randv : {—1,1}" — Ris a function p x ¢ : {—1,1}"" — R defined as

(@ x)(x) = 2" d(sgn(th(x1)), . .., sgn(¥o(w,))) [ v (@)l
i€[n]

where x = (1,...,2,) and x; € {—1,1}", fori € [n].

This subsection is dedicated to the proof of the following lemma which, together with
Lemma 4.4.10, implies Theorem 4.4.1. Observe that we have to zero out the support of
the dual polynomial outside of HY#, since our target domain is not D but D N HY¥ in
Lemma 4.4.10. - B

Lemma 4.4.14. Let N = [20(2k)*/?]R and 0 < ~ < 1/4%71. Then there exists a function
C:{=1,1} % — R such that

Vo e {-1, VPN HIY,  ((2) =0; (4.7)

Y C@f@) = D K@) >2/3 (4.8)
ceHIY{ND ceHY\D

ICh =1 and phd(g)eQ(Vlel/k/lnw). (4.9)

2. These parameters are used in [BKT20] to prove Proposition 4.4.20, which we will use.
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Proof. The construction of ( starts by block composing (Definition 4.4.13) two dual polyno-
mials ¢, ), one for GapOR}, and one for THRY,. The dual polynomial ¢ for GapOR},
is given by Proposition 4.4.15. The dual polynomial 1) for THR; is given by Proposi-
tion 4.4.17.

The block composition ¢ x 1 is a good candidate for the dual polynomial of f. Indeed,
Lemma 4.4.23 shows that it satisfies Equation (4.8), showing correlation at least 9/10 >
2/3. One could also check that it satisfies Equation (4.9). Nonetheless, it does not satisfy
Equation (4.7).

We can now use Lemma 4.4.18 to argue that there exists another dual polynomial ¢ that
satisfies Equation (4.7) and Equation (4.9). Moreover, this ¢ is close to ¢ x 1 so that it also
satisfies Equation (4.8), with the weaker but sufficient correlation 9/10 — 2/9 > 2/3. This
concludes the proof. O

As we have seen, the previous proof relies on several results, now we are going to zoom
on each of them. The first one provides a dual polynomial for OR.

Proposition 4.4.15. Let ¢ : {—1,1}" — R be such that ¢(—1%) = —1/2, ¢(17) = 1/2,
and ¢(z) = 0 forall z € {—1,1}*\ {=1% 1%} Then ||¢|; = 1, phd(¢) > 1, and

> ¢(x)OR(z) = 1.

ze{-1,1}F

Proof. |[¢llx = [1/2] +] - 1/2[ = L.
For any constant ¢, >, ., \r ¢ ¢(2) = ¢/2 — ¢/2 = 0, thus phd(¢) > 1.
er{—l,l}ﬂ ¢(x)OR(z) = —1/2-(-1)+1/2-1 =1 u

Next, we look at an explicit dual polynomial for the threshold function and some prop-
erties it satisfies.

Definition 4.4.16. Let M € N and o, f > 0. We say that a functionw : [M]y — R satisfies
the («t, B)-decay condition if 3, np, w(t) = 0, 32 e, lw(t)| = 1 and [w(t)] < ae P/,

In [BKT20, Section 5.1] the authors define a dual polynomial 1) of THRY in the follow-
ing way. Let k&, N € N, and T an integer such that k¥ < 7' < N. Let ¢ = 2k[N'/*] and
m = |\/T/c|. Define set S = {1,2,...,k} U {ci® : 0 < i < m}. Define a univariate

polynomial
(—1)tT—m+1

T
w(t) = T(t) T ¢-».
TE[T]()\S
Then let ¢ : {—1,1}" — Rbe ¢(x) = w(|a[u)/(),) for = € HYp and ¢(x) = 0
otherwise.

Let D, and D_ denote the set of false positives and that of false negatives respec-
tively if ¢ is considered as a hypothesis for THR%, i.e. D, = {z € {-1,1}" : ¢¥(z) >
0, THRY (z) = —1}and D_ = {z € {~1,1}" : ¢(x) < 0, THRE (2) = 1}.

They show that ¥ and w have the following properties.

Proposition 4.4.17. [BKT20, Proposition 5.4] Letw and 1) be the polynomials defined above.
Then the following are true.

L Y ep, (@) < gy
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2. Ypep_ 10(@)] < 53— 3

3 1l =1

4. phd(v)) > ey VE- YT N-Vk;

5. w satisfies the (v, 3)-decay condition with o = (2k)* and 8 = ¢y /NKT N/,

The next lemma is already adapted to our functions; it is a consequence of more general
results.

Lemma 4.4.18. Let N = [20(2k)*?|R, ¢ : {—1,1}® — R from Proposition 4.4.15 and
¢ {—1,1} — R from Proposition 4.4.17.

Then there exists a ¢ : {—1,1}% — R such that

= Il =1

— phd(¢) = Q(VNTVE/In N);

— [ = ox el <2/9;

— ((z) =0 forallz € {-1,1}"7\ HYY.

Before proving this, we state two propositions from [BKT20] that we are going to use
in the proof. The first one is about the properties of the dual block composition.

Proposition 4.4.19. [BKT20, Proposition 2.20] Let ¢ : {—1,1}" — R, ¢ : {—1,1}™ — R.
The dual block composition has the following properties.

L Ifl|o|li =1, |¥]y = 1 and (0, 1%") = 0, then ||p x ||, = 1.

2. Ifphd(¢) > A and phd(¢)) > A’, thenphd(¢ x ) > A - A

The second one proves the existence of the final dual polynomial (, that is close to the
“almost good” block composition ¢ x v, given that some conditions are satisfied.

Proposition 4.4.20. [BKT20, Proposition 2.22] Let R € N sufficiently large and M < R.
Let ¢ : {—1,1}' — R with ||¢]; = 1, and let w : [M]y — R satisfy the (c, 3)-decay
condition with some 1 < a < R? and 4In” R/(y/aR) < B < 1. Let N = [20\/a|R
and v : {—=1,1}¥ — R be defined as {(x) = w(|m|H)/(|I]TH) Let A < N be such that
phd(¢ %)) > A. Then there exist a A' > 3v/aR/(4In* R) and a function ¢ : {—1,1}VF —
R such that

1. phd(¢) > min{A, A’};

2 ¢~ 6l <2/

"

4. Vo € {1, 1}V with |z|g > N ((z) = 0.

Now we can proceed with the proof of the lemma.

Proof of Lemma 4.4.18. From Proposition 4.4.17 (with T = N), we know that |[¢|; = 1,
and that phd(¢)) > ¢;Vk~!N1=1/k. From Proposition 4.4.15, we know that ||¢||; = 1 and
phd(¢) > 1. Using Item 1 of Proposition 4.4.19, we obtain ||¢ « ¢||; = 1, and using Item 2,
we get phd(¢ x 1) > ¢, VEINI-1/k,

From Proposition 4.4.17, we know that the function w that is used to define 1) satisfies

the (a, 3)-decay condition for some constant o = (2k)* and 3 = cp/VkNH+1/k,
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This way, we can use Proposition 4.4.20 to obtain the function ¢ we wanted. Indeed,
our functions 1) and ¢ satisfy all the conditions of the lemma with pure high degree lower
bounded by A = ¢;Vk~IN1-1/k; and with our parameters a and 3 we obtain A’ =
co(2k)*2R/(41n*(R)WENH1/F) € Q(V N1-1/k/In® N).

O

For the next lemma, we will use the following proposition, which was implicitly used
in the proofs of [BKT20, Propositions 5.5 and 5.6] but not stated in this general form. By
convention, we denote D1 = D, and D_y = D_.

Proposition 4.4.21. Let S C {—1,1}"% Letg : {—1,1}* — {—1,1}, h : {-1,1} —
{-1,1}, ¢ : {-1,1}F — R. Letv : {—1,1}¥ — R be such that |[¢|; = 1 and
D vef—1,yn ¥(x) = 0. Then the following hold.

1. When X denotes the probability mass function A(u) = |1(u)|:

Dl@xv)@) = > |(=)]- Pr [x€S|(.. sen(v(xi)),...) = z].

~A®R
zeS ze{-1,1}8 ¥

2. When (1" denotes the probability mass function on {—1,1} (parameterized by z; €
{—1,1}) such that pi;*(=1) = 23 ., |[¥(2)], and p = p* = pi* @ ... @ uy' the
independent product distribution on {—1, 1}%:

Yo @xv)@)-(goh@) = Y 6(x) Bl mzm,.-0 )]

ze{—1,1}NR ze{—1,1}1 v

Proof. We will need the following claim.

Claim 4.4.22. Let \ denote the probability mass function \(u) = |[1(u)| foru € {—1,1}".
Then

Pr[t(u) > 0] = Pr[i(u) < 0] = .

Proof of claim. We know that }, 1 (u) = 0. Thus 3 )50 [V (W] = D2, s0 [¥(w)]. We
then conclude using that ||¢||; = 1. o

First part of Proposition 4.4.21 Below, we first apply the definition of the dual block
composition (and the fact that 27 and [], c(r) [¥(x;)| are positive). Then we use the defini-
tion of A which ensures that [ [, |¢/(2:) is the probability of getting = = (..., z;,...)
when sampling independently R times from distribution \.

D)) = 2f Y LT [l | - 1o(.. . sgn(e (@), .| - Tz € 8]

z€S ze{—1,1}NE \i€[R]

= 2% Epoer[l0(... sgn(y(y)), ... )| - I[z € 5]
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We introduce new variables z; that will be compared to sgn(¢(z;)). Using Claim 4.4.22,
the probability of picking a z € {—1, 1} from the uniform distribution such that z corre-
sponds to the vector of the signs is QLR. Thus, the previous term can be rewritten as

2f Z 6(2)] - Pr [x € SA(...,sgn(v(x;)),...) = 2]

ze{-1,1}8 A
= > 6@l PrlweS|(.. sgnv(x),...) =2
ze{-1,1}1 o

which completes the proof.

Second part of Proposition 4.4.21 Remember that \ denotes the probability mass func-
tion A(u) = |¢(u)| for u € {—1,1}". Just like in the proof of the first item,

> (¢x¥)(x)- (9 h)(x)

ze{-1,1}VR
= Y 66 E [onE)] (sl ) =2,
ze{—1,1}R "

Using Claim 4.4.22, we can first notice that for any b € {—1, 1}, the probability that an
x; sampled from ) is a false b (i.e. false positive if b = 1 and false negative if b = —1) is as
follows, where, by convention, D,y = D, and D_; = D_:

P [wi) # sento@) [sgn(uied) =b] = 37 Py [sampling o: | sgn(u(z:) = b

= 2 Z [t (@)].

xiGDb

Therefore, if z; = sgn(v(x;)) and x; is a false z;, it means that z; should be flipped to
get h(x;). Lety; € {—1,1} denote whether we flip z;. As z; is a false z; with probability
2) u.ep. [¥(z;)|, this is the probability with which we should flip z;, i.e. the probability
that y; = 1.

Thus, for any z € {—1,1}%, the vector (..., h(z;),...) with z ~ A\®F conditioned
on (...,sgn(¢(z;)),...) = z is identically distributed with (..., z;y;,...) where y; are
random bitflips according to 4i;': y; = —1 with probability 2, [¢(z;)] and y; = 1
otherwise. Z

Now we can finish the proof:

Y. =) E (goh)(@)| (.. sgn((z),...) =]

ze{-1,1}~1 eABR
ze{-1,1}~1 ymh

]

Finally, we are ready to prove the last missing statement, which is our main technical
contribution to this part. The proof of [BKT20, Lemma 6.9] does not apply directly to this
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problem: they use the fact that the dual polynomial ¢ of their inner function (OR) has one
sided error, which is not the case here.

As now we focus on the composed function f (and the dual composition ¢ * 1), the
domain is not restricted to small Hamming weight inputs anymore.

Lemma 4.4.23. Let N = [20(2k)*/*|R and 0 < v < 1/4*='. Functions ¢ from Proposi-
tion 4.4.15 and 1) from Proposition 4.4.17 satisfy

Yexv)@)- fle)— Y [(exw)(@)] = 9/10.
zeD ze{—1,1}NE\D

Proof. We rewrite the left-hand side by manipulating the sets we consider in the sums, and
then we will bound separately the terms we get.

d(ex)@) - fl@)— D [(exv) ()|

z€D ze{—1,1}NR\D

= Y (¢*¥)(z)- (OR® THRY)(x)

ze{-1,1}VR

- Y. (@x¥)(2)- (OROTHRY)(z)+ > [(@x¥)(x)

ze{-1,1}NR\D ze{—-1,1}NR\D
> ) (pxd)(x)- (ORO@THRE)(z) =2 ) [(¢*¥)(2)]
ze{-1,1}NR x€{-1,1}NR\D

We first lower bound the first term.
Claim 4.4.24.

__R_ R
me{—ZL;}NR(QS*w)(z) (OROTHRY)(x) 21 —e @71 — 48N"

Proof of claim. Using Item 2 of Proposition 4.4.21, the left-hand side can be written as

Z o(2)- E [OR(...,yizi,...)].

Ze{—11}R v

Recall that ¢(z) = 0 when 2 is anything but —1% or 1%, so only two terms are left to study.

If = = —1%, using Item 2 of Proposition 4.4.17, each y; is —1 with probability < 1 —
1/4%=! and 1 with probability > 1/4*~1. If there is any y; = 1, then the value of the OR is
still —1. The probability of this eventis > 1— (1 —1/4*1)% > 1 — " 7T, So, the expected
value is < (—1)(1 — 674’“%) +e T = —1+2 #7T. Since in this case H(—11) = —1/2,
the contribution to the sum is at most 1/2 — e,

If = = 1%, then, using Item 1 of Proposition 4.4.17, each y; is —1 with probability <
1/(48N). If any y; is —1, then the value of the OR becomes —1. The union bound tells us
that the probability of this is < R/(48N), so the expected value is at least —R/(48N) +
1 — R/(48N) = 1 — R/(24N). Multiplied by ¢(17) = 1/2, the contribution is at least

1/2 — R/(48N). Thus, the first term can be lower bounded by 1 — e T — . o

Now we bound the second term.
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Claim 4.4.25. )
2 Y exv)@) < MEm)
ze{—1,1}NE\D

Proof of claim. By Item 1 of Proposition 4.4.21 with S = {—1,1}"%\ D, the term can be
written as follows,

2 > er)@)|=2 ) [6(2)] - Pr le @ D|(..,sen((x)),...) = 4],

ze{—1,1}NR\D ze{-1,1}1
which, using that |¢(z)| = 1/2 when z is —1% or 17 and 0 otherwise, collapses to

r e g DI(.. sgn(¥(z),...) =—1"]+ Pr [z ¢ D[ (... sgn(y(y),...) =17].

xw)\®R AR

In order to bound these two terms, we introduce 0/1-variables r; and ¢;, for i € [R],
related to the false positive and false negative inputs. Define r; = 1 if THR%, (z;) = —1
and sgn(y(z;)) = 1, and otherwise 7; = 0. Similarly, ¢; = 1 if THR% (z;) = 1 and
sgn(v(z;)) = —1, and otherwise ¢; = 0.

Let us focus on the first term. If we sample x; from the conditional distribution

(Alsgn(¢(z;)) = 1), then
Prr; = 1] = Pr[THR} (2;) = —1|sgn(y(z;)) = 1] =2 Z [(x;)| < 1/(24N),

;€D

where in the last step we used Item 1 of Proposition 4.4.17. Thus, we can upper bound the
probability that an input does not satisfy the promise of GapOR}, (i.e. that it is not in D)
knowing that all the predictions are 1. It means that it contains at least one but less than
vR many —1s, so this many predictions are false positive, which can be expressed by the
r; variables. In the last step below, we use the union bound.

Pr[asgéD|W€[]sgn(¢( ) =1 =Pr 1§ZH<’YR

1€[R]

R

Similarly, for the second term, if we sample x; from the conditional distribution

(Alsgn(¢(x;)) = —1), then

Prlg; = 1] = Pr[THR} (z;) = 1|sgn(¢(z;)) = —1] =2 > [¢(z;)| < 1— %7

x;€D_

where in the last step we used Item 2 of Proposition 4.4.17.
Then, similarly to the first term, we can upper bound the probability. Now in the last
step we use Hoeffding’s inequality (Corollary 2.4.2), which introduces the constraint v <

qk—1"

x ¢ D|Vie[R]sgn(v(z;)) =—-1] <Pr|(1—-7R< Z al < €—2R<4,€%1—’y)2'
1€[R]
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Putting together the two bounds, we obtain

R R 1 2
Sore)@) f@) = D Re)@)| 21— o — e T G
zeD ze{—1,1}NR\D

When k and 1/4%~! — ~ are positive constants and R € ©(N), this is larger than 9/10 (for
large enough N). ]

Finally, we can conclude the proof of Theorem 4.4.1.

Proof of Theorem 4.4.1. By Lemma 4.4.14, there is a dual polynomial for
GapOR}, ® THR,; of pure high degree Q(v N1-1/k/In® N), that is only supported on
HX{. By Theorem 4.4.8, this means that the double-promise d-approximate degree of
GapOR}, ® THRY, with domain restricted to HY#, is Q(VN'-1/k/In®> N). Using
Lemma 4.4.10 with ¢ = [20(2k)*/?], we obtain that the bounded-error quantum query
complexity of Collision]]ﬂ\ﬂ;\, is Q(WNI=Uk/In®> N) if v = /¢ < 1/(4*1720(2k)*/?]).
This implies the same lower bound on testing k-collision-freeness with ¢ = ~/, as
Collision is just a more restricted version of the same problem. O

4.5 Testing 3-colourability

Let G = (V, E) be an undirected graph on n vertices. For positive integer k < n, a k-
colouring of G is a function ¢ : V' — [k] (so it is a vertex colouring). A k-colouring is called
proper if V{u,v} € E : c¢(u) # ¢(v). In words, a k-colouring assigns one of k available
colours to each vertex of (5, and in a proper colouring the two endpoints of each edge in G
have different colours. We call a graph k-colourable if it has a proper k-colouring.

In this section, we will prove that the problem of property testing 3-colourability in
bounded degree graphs remains maximally hard-to-test in the quantum setting. Our lower
bound proof will roughly follow the same approach as that of [BOT02]. See [BY22, Section
5.6] also for a reference.

Theorem 4.5.1 (Restatement of Theorem 4.1.4). Let G be an unknown undirected N -vertex
graph with maximum degree d, and e € (0, 1) be a parameter. Given quantum query access to
G in the undirected bounded-degree graph model, in order to distinguish if G is 3-colourable,
or if it is e-far from being 3-colourable, Q(N') quantum queries are necessary.

In order to prove the above theorem, we will first discuss the approach to proving the
classical lower bound. Then we will modify the classical proof suitably to the quantum
setting. Let us start with the notion of k-wise independent string which will be used both
in the classical and quantum lower bound proofs.

Definition 4.5.2 (k-wise independent string). Let S C {0,1}" and let string
s=(s1,...,5n) € {0,1}" be chosen uniformly at random from S. The string s is said to be
k-wise independent if for any set of k-indices i1, 15 . .., 1, the probability of any particular
assignment (b;,, bi,, ..., b;,) € {0, 1}* to the indices iy, iy . .., iy is equal to 1 /2"
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4.5.1 Classical lower bound approach for testing 3-colourability

As we discussed in the technical overview, to prove the lower bound of 3-colourability,
the authors in [BOT02] studied another problem called E(3, ¢)LIN-2, a problem related to
deciding the satisfiability of a system of linear equations. Then the authors designed a
reduction to 3-colourability from E(3, ¢)LIN-2, which finally proves the linear query com-
plexity lower bound for testing 3-colourability. We will also follow a similar approach here.
Let us first formally define the problem of E(3, ¢)LIN-2.

Definition 4.5.3 (E(3, ¢)LIN-2). Let &£ be a system of linear equations with N variables from
Fo, where there are 3 variables in each equation, and each variable occurs in at most c equa-
tions. This system & is represented as a matrix-vector pair and we have query access to their
entries. Given a parameter o € (0, 1), the goal is to distinguish if £ is satisfiable, or at least
an a-fraction of the equations need to be modified to make £ satisfiable.

The authors in [BOT02] proved the following lemma, which states that there exists a
system of linear equations (equivalently a matrix), such that any constant fraction of the
rows of this matrix are linearly independent. The authors proved this using hypergraph
constructions.

Lemma 4.5.4 ([BOT02, Theorem 8]). For every ¢ > 0, there exists a 6 > 0 such that for
every N, there exists a matrix A € {0,1}N*N with ¢cN rows and N columns such that the
following conditions hold:

1. Each row of A has exactly three non-zero entries.
2. Each column of A has exactly 3c non-zero entries.

3. Every collection of § - N rows of A is linearly independent.

Using the existence of the matrix A corresponding to Lemma 4.5.4, the authors in
[BOT02] used Yao’s minimax principle [Yao77] to prove a linear lower bound for testing
E(3, ¢)LIN-2. Using this technique allows one - in some cases — to prove a lower bound
on the worst-case complexity of a probabilistic algorithm, by instead considering the best
performance of a deterministic algorithm over the hardest distribution of the inputs. For
this problem, they designed a pair of hard-to-distinguish distributions Dyes and D,,,, such
that, unless {2(N) queries are performed, no algorithm can distinguish between them. We
present this construction in the proof sketch of the following lemma.

Lemma 4.5.5. There exists a matrix A € {0,1}N*N (similar to the matrix mentioned in
Lemma 4.5.4) such that given a parameter ¢ € (0,1) and query access to A and a vector
y € {0,1}Y, in order to distinguish if there exists another vector v € {0,1}" such that
Az =y, or for any vector v € {0,1}" only a constant ¢ fraction of the constraints encoded
by A and y are satisfied, Q)(N) queries are necessary.

Proof sketch. As we mentioned, this proof follows Yao’s minimax lower bound technique.
A pair of hard distributions Dy and D,,, are constructed, such that, unless 2(N') queries
are performed, no algorithm can distinguish between them.

Let us consider the matrix A € {0, 1}*¥*" as mentioned in Lemma 4.5.4. Based on the
matrix A, the hard-to-distinguish distributions Dy.s and D,,, are as follows:

1. Dyes: Choose a vector z € {0, 1}" uniformly at random from {0, 1}V, and set the
vector y € {0,1}Y as y = Az. Then the system of linear equations is Az = .
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2. Dyt Choose the vector y € {0, 1}*" uniformly at random from {0, 1}V, and set the
system of linear equations Ax = y.

Now we have the following claim describing the properties of Dy and D,

Claim 4.5.6.
(i) The system of linear equations corresponding to Dy is satisfiable.

(ii) With probability at least 2/3, the system of linear equations corresponding to D, is
(1/2 — «)-far from being satisfiable for every o > 0.

Note that the system of linear equations in Dy, is satisfiable by setting x = 2. On the
other hand, for the system of linear equations corresponding to D, vector y is uniformly
random. Thus, with high probability, vector Az — y has large Hamming weight for any 2z €
{0,1}", and therefore the system of linear equations Ax = y is far from being satisfiable.
The formal proof is in [BOT02, Lemma 18]. ]

The authors in [BOT02] proved the following lower bound for testing E(3, ¢)LIN-2.

Lemma 4.5.7 ([BOT02, Lemma 19]). For every o > 0, there are constants ¢ and 6 > 0 such
that every algorithm that distinguishes satisfiable instances of E(3, ¢)LIN-2 with N variables

from instances that are (1/2 — «)-far from satisfiable must have classical query complexity
at least ON.

The key insight that is used to prove the above lemma is the following. In the case
of D,,, vector y is uniformly random. On the other hand, in the case of Dy, applying
Lemma 4.5.4, any 0N rows of A are linearly independent, thus any subset of 6V entries
of y = Az will look uniformly random. Hence, y is k-wise independent with k = d/NV. It
remains to use the fact that it takes {2(k) queries to distinguish a k-wise independent vector
from a uniformly random one. We will not formally prove the above lemma here, please
refer to [BOT02] for a formal proof.

Finally, we have the reduction that maps satisfying instances of testing E(3, ¢)LIN-2 to
satisfying instances of testing 3-colourability and vice-versa.

Lemma 4.5.8 ([BOT02, Section 4]). There exists a reduction ¢ that maps instances of testing
E(3, ¢)LIN-2 to instances of testing 3-colourability such that the following hold:

1. If an input x to E(3, ¢)LIN-2 is satisfiable, then ¢(x) is a 3-colourable graph.

2. If an input x to E(3, ¢)LIN-2 is far from being satisfiable, then p(x) is a graph that is
far from being 3-colourable.

4.5.2 Quantum lower bound for testing E(3,¢)LIN-2 and
3-colourability

We will first prove the quantum lower bound for testing E(3, ¢)LIN-2. Our result is
stated as follows.

Lemma 4.5.9. For every o > 0, there are constants c and 6 > 0, such that every algorithm
that distinguishes satisfiable instances of E(3, ¢)LIN-2 with N variables from instances that
are (1/2 — «)-far from satisfiable must have quantum query complexity at least 6 N /2.

80



In order to prove the above theorem, we will be using the following well-known re-
sult, which states that distinguishing between a uniformly random string and an /-wise
independent string, for an appropriate integer /, is hard for quantum algorithms.

Proposition 4.5.10 (see e.g. [ADW22, Fact 1]). The output distribution of a quantum al-
gorithm making q queries to a uniformly random string is identical to the same algorithm
making q queries to a 2q-wise independent string.

Now let us prove Lemma 4.5.9.

Proof of Lemma 4.5.9. Following Lemmas 4.5.4 and 4.5.5, we know that there exists a matrix
A whose dN rows are linearly independent, for which testing E(3, ¢)LIN-2 requires (V)
classical queries. Moreover, from Proposition 4.5.10, we know that any quantum algorithm
that performs less than k/2 queries, cannot distinguish a uniformly random vector from a
k-wise independent vector. Now let us set & = d N. Combining all the above, this implies
that at least § V/2 quantum queries are necessary for testing E(3, ¢)LIN-2. O

Now we are finally ready to prove Theorem 4.5.1.

Proof of Theorem 4.5.1. From Lemma 4.5.9, we know that the quantum query complexity
of testing E(3,c)LIN-2 is 2(N). In order to prove similar lower bound for testing
3-colourability, we will again use a reduction approach. Given a pair of hard instances
corresponding to testing E(3,c¢)LIN-2, we will apply the reduction ¢ mentioned in
Lemma 4.5.8. Similarly to the classical setting, ¢ will map the yes instances of E(3, ¢)LIN-2
to instances of 3-colourable graphs and vice-versa. So, the quantum query lower bound of
Q(N) carries forward from E(3, ¢)LIN-2 to 3-colourability. Thus, we conclude that Q(V)
quantum queries are necessary to test 3-colourability in the bounded degree model. [

4.5.3 Other maximally hard-to-test problems

As we mentioned in the introduction, there are several other problems in the bounded
degree graph model, which are maximally hard to test classically. Moreover, their lower
bounds stem from similar ideas as the E(3, ¢)LIN-2 and 3-colourability lower bounds, as
mentioned in [YI10a, Gol25]. Following the same path as in the previous subsection, we
also obtain Q2(/N') quantum query lower bounds for all these problems. For brevity, we only
present the theorem statements below and omit their proofs.

Theorem 4.5.11 (Hamiltonian Path/Cycle). Given quantum query access to an unknown
undirected (directed) d-bounded degree N -vertex graph G for some integer d, and a parameter
e € (0,1), in order to distinguish if G has an undirected (directed) Hamiltonian path/cycle or
is e-far from having an undirected (directed) Hamiltonian path/cycle, QQ(N) quantum queries
are necessary.

Theorem 4.5.12 (Approximating Independent Set/Vertex Cover size). Given query access
to an unknown undirected d-bounded degree N -vertex graph G for some integer d, and a
parameter ¢ € (0, 1), for approximating the independent set size/vertex cover of G, Q(N)
quantum queries are necessary.
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4.6 A maximally hard-to-test property in the dense
graph model

In this section, we are going to give a property that is maximally hard to test in the dense
graph model, even for quantum algorithms. Before proceeding to presenting our result, let
us first have a brief reminder of the model. Here a graph G = (V, F) with |V| = N is
represented as an adjacency matrix Ag. The query access to Ag is defined as follows: For
a pair of vertices u,v € V,

1, there is an edge between vertices u and v;

Ac(u,v) = {

0, otherwise.

A graph G is said to be e-far from some property P for some parameter ¢ € (0, 1), if
one needs to modify (add or remove) at least e N2 edges of GG. Modifying edges is equivalent
to changing entries of the adjacency matrix A associated to GG. Since in the dense graph
model G is represented by its adjacency matrix of size ©(/N?), any property is testable by
performing O(N?) queries.

Now we proceed to proving that there exists a property that is maximally hard to test
quantumly in the adjacency matrix model. In particular, given query access to the adjacency
matrix of an unknown undirected graph G, there exists a property that requires Q(N?)
quantum queries to test. This is an adaptation of the classical (/N?) lower bound from
[GKNR12, Appendix A]: we show that testing the same property is also hard in the quantum
case. Formally, our result is stated as follows.

Theorem 4.6.1. Let G be an unknown undirected dense graph on N wvertices, and ¢ € (0, 1)
be a parameter. Given quantum query access to the adjacency matrix of G, there exists a
property P such that QQ(N?) quantum queries are necessary to distinguish if G satisfies P, or
it is e-far from satisfying P.

Let us start by describing the property considered in [GKNR12].

Property P:

Let N and n be integers such that n = (];) This way, we can fix any bijection between
sets [n] and ([];]) so that expressions {7, j} (for 7,5 € [N],i # j) and ¢ € [n] are inter-
changeable. Consider a subset C C {0, 1}" of size |C| = 2"/1%°, such that there exists some
parameter 0 € (0, 1), that a uniformly random X € C is (0n)-wise independent. This kind
of construction exists in the literature (see e.g. [ABI86, Proof of Proposition 6.5.]) and is
based on BCH codes. Without going into details about codes, we note that membership in
set C corresponds to being a codeword of a code, and it is efficiently checkable using the
parity-check matrix.

The hard-to-test graphs are constructed in three phases based on this set C:

(i) Let us consider a Boolean string X € {0,1}", and let us define an associated graph
G1(X) = ([N}, E1 (X)), such that for any two indices 7, j € [N], i # j there is an
edge between vertices ¢ and j of G (X) if and only if the {7, j}-th bit of X is 1. The
graph G (X) is said to be good if the corresponding string X € C, and it is said to be
bad if X ¢ C.
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(i) Now for any a Boolean string X € {0, 1}", we construct another graph Go(.X) based
on (i1 (X ). We first take a disjoint union of G;(.X') and a clique C' on (2N +1) vertices,
and then we add some edges between G1(X) and C. In particular, for all i € [V], let
us add an edge between the i-th vertex of G1(.X) and each of the first i vertices of C.
We denote G5(X) = ([3N + 1], E5(X)).

(iii) Finally, since we want to obtain a graph property, we have to ensure invariance over
any permutation of the vertices. To any Boolean string X € {0, 1}", let us associate
a collection of final graphs Gfinai(X) by taking the permutation closure of Go(X).
Let S5y 41 denote the permutation group on 3N + 1 elements; then Gfina(X) is the
following set.

Giinal(X) = {G3(X,0) : 0 € Ssnia}
Where G5(X,0) = ([3N + 1], E3(0)) is the graph we get from Go(X) after ap-
plying permutation o on its vertices, i.e. an edge {i,j} € Fs(o) if and only if
{o71(0), 071 (4)} € Ea(X).
Now let us describe the hard-to-distinguish graphs.

1. Final good graph: A graph H on 3N + 1 vertices is said to be final good if there is
a string X € C such that H is in the final graph set of X, i.e. H € Gfjnal(X).

2. Final bad graph: A graph H is called a final bad graph if there is a string X € {0, 1}"
such that H € Gfna(X), but H is not a final good graph.

Property P is defined as the set of final good graphs.

Classical lower bound approach for testing P:

The authors in [GKNR12] used Yao’s minimax lemma [Yao77] to prove the lower bound.
Namely, they designed two distributions Dy and D, over graphs on 3N + 1 vertices. The
distribution D, is defined by taking X € C uniformly at random and performing phases (i)
and (ii) on it. On the other hand, D,, is defined by taking a uniformly random X € {0, 1}"
and then performing phases (i) and (ii) on this bitsring. Notice that D, is only supported
on final good graphs while D, is supported on both final good and final bad graphs.

Then, they prove the following two lemmas:

Lemma 4.6.2 ((GKNR12, Claim 7.1]). Any graph G drawn from D, is 0.01-far from P
with probability higher than 9/10.

Lemma 4.6.3 ((GKNR12, Claim 7.2]). Any randomised algorithm that performs o(N?)
queries cannot distinguish graphs drawn from either Dyes or Dy,.

The proof of the above lemma relies on two facts. (1) If an algorithm could tell apart
graphs drawn from D\es or Dy, then it could also distinguish X € C from X € {0,1}". (2)
Any randomised algorithm that performs at most ¢ queries cannot distinguish between a
g-wise independent string, and a uniformly random one.

Quantum lower bound for testing P:

Proposition 4.5.10 tells us that any quantum algorithm that makes at most ¢ queries,
cannot distinguish between a uniformly random string, and a 2¢g-wise independent string.
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Thus, the approach of [GKNR12] works in our context as well, the only difference in the
lower bound is a factor of 2. Therefore, we have the following lemma. The proof of this
lemma is direct and omitted.

Lemma 4.6.4. Any quantum algorithm that performs o(N?) queries cannot distinguish
graphs drawn from either Dyes or D,.

Proof of Theorem 4.6.1. Let us consider distributions Dy and D, described above. By con-
struction, any graph drawn from D, satisfies P, and by Lemma 4.6.2, we know that a graph
drawn from D, is far from P with very high probability. Moreover, from Lemma 4.6.4, we
can say that any graphs drawn from either D, and D,, are hard to distinguish. This
completes the proof of Theorem 4.6.1. O
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Chapter 5

Conclusion and perspectives

This thesis investigates different quantum and classical algorithmic techniques in the
realms of approximation algorithms and property testing, with a strong emphasis on ap-
plications to topological data analysis and subgraph detection problems. Our contributions
span the design of new classical and quantum algorithms, and the establishment of quan-
tum query complexity lower bounds. At the same time, the results presented in this thesis
open up several avenues for further research.

The first contribution presented in the thesis focuses on of Betti number approximation
in simplicial complexes, a central task in topological data analysis. Prior work had estab-
lished a quantum algorithm with polynomial dependence on all key parameters, including
the number of vertices, the inverse precision and the inverse spectral gap of the normalised
combinatorial Laplacian. We provide the first efficient classical alternative under more re-
strictive assumptions. Our algorithm, based on a path integral Monte Carlo method, relies
on approximating traces of matrix powers related to the combinatorial Laplacian. Though
limited to regimes where the precision and spectral gap are constant, it serves as a use-
ful classical benchmark against which quantum speedups can be rigorously evaluated. We
also refine the analysis for clique complexes, where sparsity can be exploited to broaden
the tractable regime.

Our classical algorithm still falls short of matching quantum performance in some pa-
rameter regimes, even in the special case of clique complexes. It would be valuable to
investigate whether there exist efficient classical algorithms in this regime, or there is an
exponential quantum speedup for a certain set of parameters. Another direction of future
research could be to rigorously check if our algorithm can be used for estimating persistent
Betti numbers with similar efficiency.

In the second contribution, we explore the property testing version of Betti number es-
timation for clique complexes in the dense graph model. Here, we provide an algorithm
that distinguishes whether the k-th Betti number is near-maximal, or the complex is far
from this, with query complexity independent of the input size. This is done via a reduc-
tion to tolerant property testing of clique-freeness, using a matroidal characterisation of
independence, and the well-known graph removal lemma.

This result could potentially be generalised in several ways. Currently, parameter k is
required to be constant, and only the property of having an extremely large Betti number
over [Fy is shown to be testable. Maybe one could allow larger £, and test having smaller
Betti numbers over different rings. While our results are tailored to clique complexes, real-
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world data often give rise to general simplicial complexes. It would be intriguing to explore
whether similar results are possible in this case. For this, an appropriate framework of
property testing simplicial complexes would be necessary.

The last main chapter of the thesis addresses quantum property testing of subgraph-
freeness in bounded-degree directed graphs, with a focus on the k-collision and k-star prob-
lems. We present a quantum algorithm for property testing subgraph-freeness for a large
family of directed subgraphs, generalising a prior k-collision finding technique. Comple-
menting this, we prove a quantum lower bound for property testing k-collision-freeness
using the dual polynomial method. Our work refines the polynomial construction and cor-
relation analysis, extending previous techniques to new settings. This potentially broadens
the class of problems where such lower bounds can be proved. Finally, we show that both
in the bounded-degree model and in the dense model, there exist graph problems that are
maximally hard to test.

The most obvious gap that our results leave is that the upper and lower bounds do not
match, and it would be exciting to see what the true complexity of these problems is. It
would also be interesting to see if it is possible to use less quantum memory in our algo-
rithm, in exchange for a slightly increased query complexity. The dual polynomial method
remains one of the few tools available for proving quantum lower bounds. However, it is
technically demanding and problem-specific. One key challenge is to develop more modu-
lar or automatable constructions. A general quantum version of the proportional moments
technique [RRSS09] could be one such option. Finally, because of the close connection of
the two models, we hope that some new results in the query complexity model could solve
open questions in distribution testing.
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